On quantales and spectra of C*-algebras

被引:23
|
作者
Kruml, D
Pelletier, JW
Resende, P
Rosicky, R
机构
[1] Masaryk Univ, Fac Sci, Dept Algebra & Geometry, Brno 66295, Czech Republic
[2] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
[3] Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
关键词
noncommutative space; C*-algebra; noncommutative spectrum; spatial quantale;
D O I
10.1023/A:1026106305210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study properties of the quantale spectrum Max A of an arbitrary unital C*-algebra A. In particular we show that the spatialization of Max A with respect to one of the notions of spatiality in the literature yields the locale of closed ideals of A when A is commutative. We study under general conditions functors with this property, in addition requiring that colimits be preserved, and we conclude in this case that the spectrum of A necessarily coincides with the locale of closed ideals of the commutative reflection of A. Finally, we address functorial properties of Max, namely studying (non-)preservation of limits and colimits. Although Max is not an equivalence of categories, therefore not providing a direct generalization of Gelfand duality to the noncommutative case, it is a faithful complete invariant of unital C*-algebras.
引用
收藏
页码:543 / 560
页数:18
相关论文
共 50 条
  • [1] On Quantales and Spectra of C*-Algebras
    David Kruml
    Joan Wick Pelletier
    Pedro Resende
    Jiří Rosický
    Applied Categorical Structures, 2003, 11 : 543 - 560
  • [2] QUANTALES AND C-STAR-ALGEBRAS
    BORCEUX, F
    ROSICKY, J
    VANDENBOSSCHE, G
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 40 : 398 - 404
  • [3] Von Neumann algebras and Hilbert quantales
    Pelletier, JW
    APPLIED CATEGORICAL STRUCTURES, 1997, 5 (03) : 249 - 264
  • [4] Flat topology on the spectra of quantales
    Georgescu, George
    Fuzzy Sets and Systems, 2021, 406 : 22 - 41
  • [5] Von Neumann Algebras and Hilbert Quantales
    J. Wick Pelletier
    Applied Categorical Structures, 1997, 5 (3) : 249 - 264
  • [6] Quantale algebras as lattice-valued quantales
    Zhao, Bin
    Wu, Supeng
    Wang, Kaiyun
    SOFT COMPUTING, 2017, 21 (10) : 2561 - 2574
  • [7] Flat topology on the spectra of of quantales
    Georgescu, George
    FUZZY SETS AND SYSTEMS, 2021, 406 : 22 - 41
  • [8] Quantale algebras as lattice-valued quantales
    Bin Zhao
    Supeng Wu
    Kaiyun Wang
    Soft Computing, 2017, 21 : 2561 - 2574
  • [9] Non-commutative logical algebras and algebraic quantales
    Rump, Wolfgang
    Yang, Yi Chuan
    ANNALS OF PURE AND APPLIED LOGIC, 2014, 165 (02) : 759 - 785
  • [10] Effect Algebras, Girard Quantales and Complementation in Separation Logic
    Bannister, Callum
    Hoefner, Peter
    Struth, Georg
    RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE (RAMICS 2021), 2021, 13027 : 37 - 53