Dispersionless Propagation of Ultrashort Spin-Wave Pulses in Ultrathin Yttrium Iron Garnet Waveguides

被引:7
|
作者
Divinskiy, B. [1 ]
Merbouche, H. [2 ]
Nikolaev, K. O. [1 ]
de Vasconcellos, S. Michaelis [3 ,4 ]
Bratschitsch, R. [3 ,4 ]
Gouere, D. [2 ]
Lebrun, R. [2 ]
Cros, V. [2 ]
Ben Youssef, J. [5 ]
Bortolotti, P. [2 ]
Anane, A. [2 ]
Demokritov, S. O. [1 ]
Demidov, V. E. [1 ]
机构
[1] Univ Munster, Inst Appl Phys, D-48149 Munster, Germany
[2] Univ Paris Saclay, CNRS, Unite Mixte Phys, F-91767 Palaiseau, France
[3] Univ Munster, Inst Phys, D-48149 Munster, Germany
[4] Univ Munster, Ctr Nanotechnol, D-48149 Munster, Germany
[5] Univ Bretagne Occidentale, LabSTICC, UMR 6285, CNRS, F-29238 Brest, France
关键词
Spin waves;
D O I
10.1103/PhysRevApplied.16.024028
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study experimentally the propagation of nanosecond spin-wave pulses in microscopic waveguides made of nanometer-thick yttrium iron garnet films. For these studies, we use microfocus Brillouin light scattering spectroscopy, which provides the possibility to observe propagation of the pulses with high spatial and temporal resolution. We show that, for most spin-wave frequencies, dispersion leads to broadening of the pulse by several times at propagation distances of 10 mu m. However, for certain frequency interval, the dispersion broadening is suppressed almost completely resulting in a dispersionless pulse propagation. We show that the formation of the dispersion-free region is caused by the competing effects of the dipolar and the exchange interaction, which can be controlled by the variation of the waveguide geometry. These conclusions are supported by micromagnetic simulations and analytical calculations. Our findings provide a simple solution for the implementation of high-speed magnonic systems that require undisturbed propagation of short information-carrying spin-wave pulses.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers
    Pirro, P.
    Braecher, T.
    Chumak, A. V.
    Laegel, B.
    Dubs, C.
    Surzhenko, O.
    Goernert, P.
    Leven, B.
    Hillebrands, B.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (01)
  • [2] SPIN-WAVE PROPAGATION AND MAGNETOELASTIC INTERACTION IN YTTRIUM IRON GARNET
    ESHBACH, JR
    [J]. JOURNAL OF APPLIED PHYSICS, 1963, 34 (04) : 1298 - &
  • [3] SPIN-WAVE PROPAGATION AND MAGNETOELASTIC INTERACTION IN YTTRIUM IRON GARNET
    ESHBACH, JR
    [J]. PHYSICAL REVIEW LETTERS, 1962, 8 (09) : 357 - &
  • [4] SPIN-WAVE SPECTRUM OF YTTRIUM IRON GARNET
    DOUGLASS, RL
    [J]. PHYSICAL REVIEW, 1960, 120 (05): : 1612 - 1614
  • [5] Effect of surface spin pinning on the spin-wave propagation in yttrium iron garnet films
    Kolodin, PA
    Gromova, YV
    Kostylev, MP
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (06) : 4465 - 4468
  • [6] SPIN-WAVE SPECTRA OF YTTRIUM AND GADOLINIUM IRON GARNET
    HARRIS, AB
    [J]. PHYSICAL REVIEW, 1963, 132 (06): : 2398 - &
  • [7] Propagation of Spin-Wave Packets in Individual Nanosized Yttrium Iron Garnet Magnonic Conduits
    Heinz, Bjoern
    Braecher, Thomas
    Schneider, Michael
    Wang, Qi
    Laegel, Bert
    Friedel, Anna M.
    Breitbach, David
    Steinert, Steffen
    Meyer, Thomas
    Kewenig, Martin
    Dubs, Carsten
    Pirro, Philipp
    Chumak, Andrii, V
    [J]. NANO LETTERS, 2020, 20 (06) : 4220 - 4227
  • [8] SPIN-WAVE DISPERSION CURVES FOR YTTRIUM IRON-GARNET
    PLANT, JS
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (23): : 4805 - 4814
  • [9] TEMPERATURE DEPENDENCE OF SPIN-WAVE SPECTRUM OF YTTRIUM IRON GARNET
    LECRAW, RC
    WALKER, LR
    [J]. JOURNAL OF APPLIED PHYSICS, 1961, 32 (03) : S167 - &
  • [10] Parametric Generation of Propagating Spin Waves in Ultrathin Yttrium Iron Garnet Waveguides
    Mohseni, Morteza
    Kewenig, Martin
    Verba, Roman
    Wang, Qi
    Schneider, Michael
    Heinz, Bjoern
    Kohl, Felix
    Dubs, Carsten
    Laegel, Bert
    Serga, Alexander A.
    Hillebrands, Burkard
    Chumak, Andrii V.
    Pirro, Philipp
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (04):