Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type

被引:54
|
作者
Hsu, SB [1 ]
Hwang, TW
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
[2] Kaohsiung Normal Univ, Dept Math, Kaohsiung, Taiwan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 1999年 / 3卷 / 01期
关键词
Holling-Tanner model; predator-prey system; Andronov-Hopf bifurcation; multiple limit cycle;
D O I
10.11650/twjm/1500407053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the Hopf bifurcation for the Holling-Tanner model, a well-known predator-prey model in mathematical ecology. We show that for some parameter ranges, the Hopf bifurcation is subcritical and thus the system may have multiple limit cycles.
引用
收藏
页码:35 / 53
页数:19
相关论文
共 50 条
  • [1] HOPF BIFURCATION PROPERTIES OF HOLLING TYPE PREDATOR-PREY SYSTEMS
    Shim, Seong-A B
    [J]. JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2008, 15 (03): : 329 - 342
  • [2] Hopf Bifurcation for a Predator-prey System with Holling-III
    Zheng, Qingyu
    Jin, Yinlai
    Du, Hongshan
    [J]. PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 430 - 432
  • [3] Persistence and bifurcation analysis on a predator-prey system of holling type
    Mukherjee, D
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02): : 339 - 344
  • [4] Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type
    Hu, Dongpo
    Cao, Hongjun
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 702 - 715
  • [5] Hopf bifurcation analysis of a predator-prey system with Holling type IV functional response and time delay
    Lian, Fuyun
    Xu, Yuantong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (04) : 1484 - 1495
  • [6] Hopf Bifurcation of a Modified Leslie-Gower Predator-Prey System
    Liu, Wei
    Fu, Chaojin
    [J]. COGNITIVE COMPUTATION, 2013, 5 (01) : 40 - 47
  • [7] Hopf bifurcation in a predator-prey system with Holling type III functional response and time delays
    Zhang Z.
    Yang H.
    Fu M.
    [J]. Journal of Applied Mathematics and Computing, 2014, 44 (1-2) : 337 - 356
  • [8] Hopf bifurcation for a predator-prey biological economic system with Holling type II functional response
    Liu, Wei
    Fu, Chaojin
    Chen, Boshan
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (06): : 1114 - 1127
  • [9] Bifurcations of a predator-prey system of Holling and Leslie types
    Li, Yilong
    Xiao, Dongmei
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 606 - 620
  • [10] Bifurcation of Codimension 3 in a Predator-Prey System of Leslie Type with Simplified Holling Type IV Functional Response
    Huang, Jicai
    Xia, Xiaojing
    Zhang, Xinan
    Ruan, Shigui
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (02):