Single-Trial EEG Responses Classified Using Latency Features

被引:4
|
作者
Hardiansyah, Irzam [1 ]
Pergher, Valentina [2 ,3 ]
Van Hulle, Marc M. [3 ]
机构
[1] KU Leuven Univ Leuven, Dept Comp Sci, Celestijnenlaan 200A,POB 2402, B-3000 Leuven, Belgium
[2] Harvard Univ, Dept Cognit Neuropsychol, 33 Kirkland St, Cambridge, MA 02138 USA
[3] KU Leuven Univ Leuven, Computat Neurosci Res Grp, Lab Neuro & Psychophysiol, Herestr 49,O&N 2,POB 1021, B-3000 Leuven, Belgium
基金
欧盟地平线“2020”;
关键词
Longitudinal covert attention training; EEG; machine learning classification; latency features; EVENT-RELATED POTENTIALS; WORKING-MEMORY; COGNITIVE PLASTICITY; SELECTIVE ATTENTION; BRAIN POTENTIALS; ERP; YOUNG; OLD; COMPONENT; GAINS;
D O I
10.1142/S0129065720500331
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Covert attention has been repeatedly shown to impact on EEG responses after single and repeated practice sessions. Machine learning techniques are increasingly adopted to classify single-trial EEG responses thereby primarily relying on amplitude-based features instead of latency-based features. In this study, we investigated changes in EEG response signatures of nine healthy older subjects when performing 10 sessions of covert attention training. We show that, when we trained classifiers to distinguish recorded EEC patterns between the two experimental conditions (a target stimulus is "present" or "not present"), latency-based classifiers outperform the amplitude-based ones and that classification accuracy improved along with behavioral accuracy, providing supportive evidence of brain plasticity.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Multiclass classification of single-trial evoked EEG responses
    Cecotti, Hubert
    Ries, Anthony J.
    Eckstein, Miguel P.
    Giesbrecht, Barry
    [J]. 2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 1719 - 1722
  • [2] Perturbation-evoked potentials can be classified from single-trial EEG
    Ditz, Jonas C.
    Schwarz, Andreas
    Mueller-Putz, Gernot R.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2020, 17 (03)
  • [3] Evolutionary optimization of classifiers and features for single-trial EEG Discrimination
    Malin CB Åberg
    Johan Wessberg
    [J]. BioMedical Engineering OnLine, 6
  • [4] Evolutionary optimization of classifiers and features for single-trial EEG Discrimination
    Aberg, Malin C. B.
    Wessberg, Johan
    [J]. BIOMEDICAL ENGINEERING ONLINE, 2007, 6 (1)
  • [5] Estimation of Single-Trial fmRI BOLD Responses Using Combined EEG and fMRI Measurements
    Ranta-aho, Perttu O.
    Niskanen, Eini I.
    Georgiadis, Stefanos
    Kononen, Mervi
    Tarvainen, Mika P.
    Karjalainen, Pasi A.
    [J]. 2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 299 - +
  • [6] Classification of driver's cognitive responses using nonparametric single-trial EEG analysis
    Lin, Chin-Teng
    Ko, Li-Wei
    Lin, Ken-Li
    Kuo, Bor-Chen
    Liang, Sheng-Fu
    Chung, I-Fang
    Van, Lan-Da
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 2019 - +
  • [7] Single-trial EEG analysis using similarity measure
    Hsu, Wei-Yen
    [J]. BIO-MEDICAL MATERIALS AND ENGINEERING, 2015, 26 (3-4) : 161 - 168
  • [8] Biometrics Based on Single-Trial EEG
    Choi, Ga-Young
    Choi, Soo-In
    Rahmawati, Rahmawati
    [J]. 2019 7TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2019, : 180 - 183
  • [9] Using single-trial EEG to predict and analyze subsequent memory
    Noh, Eunho
    Herzmann, Grit
    Curran, Tim
    de Sa, Virginia R.
    [J]. NEUROIMAGE, 2014, 84 : 712 - 723
  • [10] Time-Frequency Features Combination to Improve Single-Trial EEG Classification
    Yonas, A.
    Prihatmanto, A. S.
    Mengko, T. L.
    [J]. WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 805 - 808