Deep phase retrieval for astronomical Shack-Hartmann wavefront sensors

被引:26
|
作者
Guo, Youming [1 ,2 ,3 ]
Wu, Yu [1 ,2 ,3 ]
Li, Ying [1 ,2 ,3 ]
Rao, Xuejun [1 ,2 ]
Rao, Changhui [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Adapt Opt, POB 350, Chengdu 610209, Sichuan, Peoples R China
[2] Chinese Acad Sci, Inst Opt & Elect, Lab Adapt Opt, POB 350, Chengdu 610209, Sichuan, Peoples R China
[3] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
atmospheric effects; instrumentation: adaptive optics; techniques: image processing; CENTROID COMPUTATION; RECONSTRUCTION;
D O I
10.1093/mnras/stab3690
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a high-speed deep learning-based phase retrieval approach for Shack-Hartmann wavefront sensors used in astronomical adaptive optics. It reconstructs the Zernike modal coefficients from the image captured by the wavefront sensor with a lightweight convolutional neural network. Compared to the traditional slope-based wavefront reconstruction, the proposed approach uses the image captured by the sensor directly as inputs for more high-order aberrations. Compared to the recently developed iterative phase retrieval methods, the speed is much faster with the computation time less than 1 ms for a 100-aperture configuration, which may satisfy the requirement of an astronomical adaptive optics system. Simulations have been done to demonstrate the advantages of this approach. Experiments on a 241-unit deformable-secondary-mirror AOS have also been done to validate the proposed approach.
引用
收藏
页码:4347 / 4354
页数:8
相关论文
共 50 条
  • [1] Extended scene deep-phase-retrieval Shack-Hartmann wavefront sensors
    Zhang, Manting
    Zhang, Lanqiang
    Rao, Xuejun
    Bao, Hua
    Guo, Youming
    Rao, Changhui
    ASTRONOMY & ASTROPHYSICS, 2024, 683
  • [2] Performance Characterization of Deep-Phase-Retrieval Shack-Hartmann Wavefront Sensors
    Zhang, Manting
    Guo, Youming
    IEEE PHOTONICS JOURNAL, 2023, 15 (02):
  • [3] Using photodetectors in Shack-Hartmann wavefront sensors
    Antoshkin L.V.
    Lavrinov V.V.
    Lavrinova L.N.
    Lukin V.P.
    Optoelectronics, Instrumentation and Data Processing, 2012, 48 (2) : 146 - 152
  • [4] A comparison of the Shack-Hartmann and pyramid wavefront sensors
    Chew, Theam Yong
    Clare, Richard M.
    Lane, Richard G.
    OPTICS COMMUNICATIONS, 2006, 268 (02) : 189 - 195
  • [5] Phase retrieval using a modified Shack-Hartmann wavefront sensor with defocus
    Li, Changwei
    Li, Bangming
    Zhang, Sijiong
    APPLIED OPTICS, 2014, 53 (04) : 618 - 624
  • [6] Comparison of Shack-Hartmann wavefront sensing and phase-diverse phase retrieval
    Ellerbroek, BL
    Thelen, BJ
    Lee, DJ
    Carrara, DA
    Paxman, RG
    ADAPTIVE OPTICS AND APPLICATIONS, 1997, 3126 : 307 - 320
  • [7] Analysis of correlation algorithms for Shack-Hartmann wavefront sensors
    Xiong, Zhaojun
    Chen, Shanqiu
    Dong, Lizhi
    Yang, Ping
    Xu, Bing
    Zhao, Wang
    Yu, Xin
    Yang, Kangjian
    Wang, Xun
    He, Xing
    9TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: LARGE MIRRORS AND TELESCOPES, 2018, 10837
  • [8] Angular tolerance of Shack-Hartmann wavefront sensors with microaxicons
    Grunwald, Ruediger
    Huferath, Silke
    Bock, Martin
    Neumann, Uwe
    Langer, Stefan
    OPTICS LETTERS, 2007, 32 (11) : 1533 - 1535
  • [9] Comparison of wavefront sensing with the Shack-Hartmann and pyramid sensors
    Clare, RM
    Lane, RG
    ADVANCEMENTS IN ADAPTIVE OPTICS, PTS 1-3, 2004, 5490 : 1211 - 1222
  • [10] Miniaturized Shack-Hartmann Wavefront-Sensors for Starbugs
    Goodwin, Michael
    Richards, Samuel
    Zheng, Jessica
    Lawrence, Jon
    Leon-Saval, Sergio
    Argyros, Alexander
    Alcalde, Belen
    ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION, 2014, 9151