Robust model predictive control with imperfect information

被引:29
|
作者
Richards, A [1 ]
How, J [1 ]
机构
[1] Univ Bristol, Dept Aerosp Engn, Bristol BS8 1TR, Avon, England
关键词
D O I
10.1109/ACC.2005.1469944
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents two extensions to robust Model Predictive Control (MPC) involving imperfect information. Previous work developed a form of MPC guaranteeing feasibility and constraint satisfaction given an, unknown but bounded disturbance and perfect state information. In the first extension, this controller is modified to account for an unknown but bounded state estimation error. As an example, a simple estimator is proposed and analyzed to provide the necessary error bounds. Furthermore, it is shown that delayed state information can he handled using the same method. These analyses depend on knowledge of bounds on the measurement and disturbance uncertainties. The second extension provides a method of estimating these bounds using available data, providing an adaptive form of the controller for cases where the error levels are poorly known a priori.
引用
收藏
页码:268 / 273
页数:6
相关论文
共 50 条
  • [1] Robust economic Model Predictive Control using stochastic information
    Bayer, Florian A.
    Lorenzen, Matthias
    Mueller, Matthias A.
    Allgoewer, Frank
    AUTOMATICA, 2016, 74 : 151 - 161
  • [2] Robust nonlinear model predictive control with partial state information
    Scholte, Eelco
    Campbell, Mark E.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2008, 16 (04) : 636 - 651
  • [3] A Novel Robust Predictive Control System Over Imperfect Networks
    Truong Quang Dinh
    Ahn, Kyoung Kwan
    Marco, James
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (02) : 1751 - 1761
  • [4] Robust Sampling Based Model Predictive Control with Sparse Objective Information
    Williams, Grady
    Goldfain, Brian
    Drews, Paul
    Saigol, Kamil
    Rehg, James M.
    Theodorou, Evangelos A.
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [5] Stochastic Model Predictive Control of Time-Variant Nonlinear Systems With Imperfect State Information
    Weissel, Florian
    Schreiter, Thomas
    Huber, Marco F.
    Hanebeck, Uwe D.
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 599 - 605
  • [6] Robust model predictive control with zone control
    Gonzalez, A. H.
    Marchetti, J. L.
    Odloak, D.
    IET CONTROL THEORY AND APPLICATIONS, 2009, 3 (01): : 121 - 135
  • [7] Modular Robust Model Predictive Control
    Attarwala, F T.
    MED: 2009 17TH MEDITERRANEAN CONFERENCE ON CONTROL & AUTOMATION, VOLS 1-3, 2009, : 669 - 675
  • [8] Robust distributed model predictive control
    Richards, A.
    How, J. P.
    INTERNATIONAL JOURNAL OF CONTROL, 2007, 80 (09) : 1517 - 1531
  • [9] ROBUST STABILITY OF MODEL PREDICTIVE CONTROL
    OHSHIMA, M
    HASHIMOTO, I
    TAKAMATSU, T
    OHNO, H
    KAGAKU KOGAKU RONBUNSHU, 1988, 14 (04) : 517 - 524
  • [10] Robust Model Predictive Control: A survey
    Bemporad, A
    Morari, M
    ROBUSTNESS IN IDENTIFICATION AND CONTROL, 1999, 245 : 207 - 226