Layer Separation in X-ray Angiograms for Vessel Enhancement with Fully Convolutional Network

被引:0
|
作者
Hao, Haidong [1 ]
Ma, Hua [2 ]
van Walsum, Theo [2 ]
机构
[1] Delft Univ Technol, Fac EEMCS, Delft, Netherlands
[2] Erasmus MC, Biomed Imaging Grp Rotterdam, Rotterdam, Netherlands
关键词
D O I
10.1007/978-3-030-01364-6_5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Percutaneous coronary intervention is a treatment for coronary artery disease, which is performed under image-guidance using X-ray angiography. The intensities in an X-ray image are a superimposition of 2D structures projected from 3D anatomical structures, which makes robust information processing challenging. The purpose of this work is to investigate to what extent vessel layer separation can be achieved with deep learning, especially adversarial networks. To this end, we develop and evaluate a deep learning based method for vessel layer separation. In particular, the method utilizes a fully convolutional network (FCN), which was trained by two different strategies: an L-1 loss and a combination of L-1 and adversarial losses. The experiment results show that the FCN trained with both losses can well enhance vessel structures by separating the vessel layer, while the L-1 loss results in better contrast. In contrast to traditional layer separation methods [1], both our methods can be executed much faster and thus have potential for real-time applications.
引用
收藏
页码:36 / 44
页数:9
相关论文
共 50 条
  • [1] Vessel Layer Separation in X-ray Angiograms with Fully Convolutional Network
    Hao, Haidong
    Ma, Hua
    van Walsum, Theo
    MEDICAL IMAGING 2018: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2018, 10576
  • [2] Automatic online layer separation for vessel enhancement in X-ray angiograms for percutaneous coronary interventions
    Ma, Hua
    Hoogendoorn, Ayla
    Regar, Evelyn
    Niessen, Wiro J.
    van Walsum, Theo
    MEDICAL IMAGE ANALYSIS, 2017, 39 : 145 - 161
  • [3] Layer Separation for Vessel Enhancement in Interventional X-ray Angiograms Using Morphological Filtering and Robust PCA
    Ma, Hua
    Dibildox, Gerardo
    Banerjee, Jyotirmoy
    Niessen, Wiro
    Schultz, Carl
    Regar, Evelyn
    van Walsum, Theo
    AUGMENTED ENVIRONMENTS FOR COMPUTER-ASSISTED INTERVENTIONS, AE-CAI 2015, 2015, 9365 : 104 - 113
  • [4] Multichannel Fully Convolutional Network for Coronary Artery Segmentation in X-Ray Angiograms
    Fan, Jingfan
    Yang, Jian
    Wang, Yachen
    Yang, Siyuan
    Ai, Danni
    Huang, Yong
    Song, Hong
    Hao, Aimin
    Wang, Yongtian
    IEEE ACCESS, 2018, 6 : 44635 - 44643
  • [5] Vessels Enhancement in X-ray Angiograms
    Tache, Irina Andra
    2015 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2015,
  • [6] Vessel Segmentation of Coronary X-ray Angiograms
    Tache, Irina Andra
    2016 20TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2016, : 727 - 731
  • [7] Vesselness-constrained robust PCA for vessel enhancement in x-ray coronary angiograms
    Zhang, Jingyang
    Wang, Guotai
    Xie, Hongzhi
    Zhang, Shuyang
    Shi, Zhenghui
    Gu, Lixu
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (15):
  • [8] VESSEL REGION DETECTION IN CORONARY X-RAY ANGIOGRAMS
    Fazlali, H. R.
    Karimi, N.
    Soroushmehr, S. M. R.
    Sinha, S.
    Samavi, S.
    Nallamothu, B.
    Najarian, K.
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1493 - 1497
  • [9] AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography
    Kritika Iyer
    Cyrus P. Najarian
    Aya A. Fattah
    Christopher J. Arthurs
    S. M. Reza Soroushmehr
    Vijayakumar Subban
    Mullasari A. Sankardas
    Raj R. Nadakuditi
    Brahmajee K. Nallamothu
    C. Alberto Figueroa
    Scientific Reports, 11
  • [10] AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography
    Iyer, Kritika
    Najarian, Cyrus P.
    Fattah, Aya A.
    Arthurs, Christopher J.
    Soroushmehr, S. M. Reza
    Subban, Vijayakumar
    Sankardas, Mullasari A.
    Nadakuditi, Raj R.
    Nallamothu, Brahmajee K.
    Figueroa, C. Alberto
    SCIENTIFIC REPORTS, 2021, 11 (01)