Fluidization of collisionless plasma turbulence

被引:42
|
作者
Meyrand, Romain [1 ,2 ]
Kanekar, Anjor [3 ,4 ]
Dorland, William [3 ,5 ]
Schekochihin, Alexander A. [5 ,6 ]
机构
[1] Ecole Polytech, Lab Phys Plasmas, F-91128 Palaiseau, France
[2] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[4] Palantir Technol, London W1D 3QW, England
[5] Univ Oxford, Clarendon Lab, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
[6] Univ Oxford Merton Coll, Oxford OX1 4JD, England
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
plasma turbulence; Landau damping; plasma echo; solar wind; ADVECTION-DOMINATED ACCRETION; LANDAU FLUID MODEL; SOLAR-WIND; MAGNETOHYDRODYNAMIC TURBULENCE; ASTROPHYSICAL GYROKINETICS; 3-DIMENSIONAL ANISOTROPY; EQUATIONS; SPACE; INTERMITTENCY; SIMULATIONS;
D O I
10.1073/pnas.1813913116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a collisionless, magnetized plasma, particles may stream freely along magnetic field lines, leading to "phase mixing" of their distribution function and consequently, to smoothing out of any "compressive" fluctuations (of density, pressure, etc.). This rapid mixing underlies Landau damping of these fluctuations in a quiescent plasma-one of the most fundamental physical phenomena that makes plasma different from a conventional fluid. Nevertheless, broad power law spectra of compressive fluctuations are observed in turbulent astrophysical plasmas (most vividly, in the solar wind) under conditions conducive to strong Landau damping. Elsewhere in nature, such spectra are normally associated with fluid turbulence, where energy cannot be dissipated in the inertial-scale range and is, therefore, cascaded from large scales to small. By direct numerical simulations and theoretical arguments, it is shown here that turbulence of compressive fluctuations in collisionless plasmas strongly resembles one in a collisional fluid and does have broad power law spectra. This "fluidization" of collisionless plasmas occurs, because phase mixing is strongly suppressed on average by "stochastic echoes," arising due to nonlinear advection of the particle distribution by turbulent motions. Other than resolving the long-standing puzzle of observed compressive fluctuations in the solar wind, our results suggest a conceptual shift for understanding kinetic plasma turbulence generally: rather than being a system where Landau damping plays the role of dissipation, a collisionless plasma is effectively dissipationless, except at very small scales. The universality of "fluid" turbulence physics is thus reaffirmed even for a kinetic, collisionless system.
引用
收藏
页码:1185 / 1194
页数:10
相关论文
共 50 条
  • [1] Magnetorotational Turbulence and Dynamo in a Collisionless Plasma
    Kunz, Matthew W.
    Stone, James M.
    Quataert, Eliot
    PHYSICAL REVIEW LETTERS, 2016, 117 (23)
  • [2] HELICON TURBULENCE SPECTRA IN COLLISIONLESS PLASMA
    LIVSHITS, MA
    TSYTOVIC.VN
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1972, 62 (02): : 606 - &
  • [3] SPECTRA OF MAGNETOHYDRODYNAMIC TURBULENCE IN COLLISIONLESS PLASMA
    LIVSHITS, MA
    TSYTOVICH, VN
    NUCLEAR FUSION, 1970, 10 (03) : 241 - +
  • [4] DIAGRAM APPROACH TO THEORY OF COLLISIONLESS PLASMA TURBULENCE
    BISKAMP, D
    ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1968, A 23 (09): : 1362 - &
  • [5] SPECTRAL BREAKS OF ALFVENIC TURBULENCE IN A COLLISIONLESS PLASMA
    Boldyrev, Stanislav
    Chen, Christopher H. K.
    Xia, Qian
    Zhdankin, Vladimir
    ASTROPHYSICAL JOURNAL, 2015, 806 (02):
  • [6] Topology of turbulence within collisionless plasma reconnection
    Bogdan Hnat
    Sandra Chapman
    Nicholas Watkins
    Scientific Reports, 13
  • [7] Topology of turbulence within collisionless plasma reconnection
    Hnat, Bogdan
    Chapman, Sandra
    Watkins, Nicholas
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] Evidence of entropy cascade in collisionless magnetized plasma turbulence
    Kawamori, Eiichirou
    Lin, Yu-Ting
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [9] Thermal disequilibration of ions and electrons by collisionless plasma turbulence
    Kawazura, Yohei
    Barnes, Michael
    Schekochihin, Alexander A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (03) : 771 - 776
  • [10] Interplay between intermittency and dissipation in collisionless plasma turbulence
    Mallet, Alfred
    Klein, Kristopher G.
    Chandran, Benjamin D. G.
    Groselj, Daniel
    Hoppock, Ian W.
    Bowen, Trevor A.
    Salem, Chadi S.
    Bale, Stuart D.
    JOURNAL OF PLASMA PHYSICS, 2019, 85 (03)