Worst-case approximability of functions on finite groups by endomorphisms and affine maps

被引:0
|
作者
Bors, Alexander [1 ]
机构
[1] Radon Inst Computat & Appl Math RICAM, Appl Discrete Math & Cryptog, Altenberger Str 69, Linz, Upper Austria, Austria
基金
奥地利科学基金会;
关键词
Finite groups; affine functions; Hamming metric; nonlinearity; BENT FUNCTIONS; AUTOMORPHISMS;
D O I
10.1142/S0219498821502352
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the maximum Hamming distance (or rather, the complementary notion of "minimum approximability") of a general function on a finite group G to either of the sets End(G) and Aff(G), of group endomorphisms of G and affine maps on G, respectively, the latter being a certain generalization of endomorphisms. We give general bounds on these two quantities and discuss an infinite class of extremal examples (where each of the two Hamming distances can be made as large as generally possible). Finally, we compute the precise values of the two quantities for all finite groups G with vertical bar G vertical bar <= 15.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Beyond Worst-case (In)approximability of Nonsubmodular Influence Maximization
    Schoenebeck, Grant
    Tao, Biaoshuai
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2019, 11 (03)
  • [2] WORST-CASE DELAY ESTIMATION OF TRANSISTOR GROUPS
    GAIOTTI, S
    DAGENAIS, MR
    RUMIN, NC
    26TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, 1989, : 491 - 496
  • [3] Worst-Case Analysis of Electrical and Electronic Equipment via Affine Arithmetic
    Ding, Tongyu
    Zhang, Liang
    Trinchero, Riccardo
    Stievano, Igor S.
    Canavero, Flavio G.
    2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2017, : 991 - 993
  • [4] Beyond Worst-case: A Probabilistic Analysis of Affine Policies in Dynamic Optimization
    El Housni, Omar
    Goyal, Vineet
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [5] Worst-case analysis of maximal dual feasible functions
    Jürgen Rietz
    Cláudio Alves
    J. M. Valério de Carvalho
    Optimization Letters, 2012, 6 : 1687 - 1705
  • [6] Cryptographic Functions from Worst-Case Complexity Assumptions
    Micciancio, Daniele
    LLL ALGORITHM: SURVEY AND APPLICATIONS, 2010, : 427 - 452
  • [7] Worst-case analysis of maximal dual feasible functions
    Rietz, Juergen
    Alves, Claudio
    Valerio de Carvalho, J. M.
    OPTIMIZATION LETTERS, 2012, 6 (08) : 1687 - 1705
  • [8] Worst-case analysis of finite-time control policies
    Ma, DL
    Braatz, RD
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2001, 9 (05) : 766 - 774
  • [9] Worst-case groundness analysis using positive Boolean functions
    Codish, M
    JOURNAL OF LOGIC PROGRAMMING, 1999, 41 (01): : 125 - 128
  • [10] Worst-case groundness analysis using definite Boolean functions
    Genaim, S
    Codish, M
    Howe, JM
    THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2001, 1 : 611 - 615