Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph rotation

被引:13
|
作者
Lucchesi, Lydia R. [1 ]
Wikle, Christopher K. [1 ]
机构
[1] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
来源
STAT | 2017年 / 6卷 / 01期
基金
美国国家科学基金会;
关键词
sample surveys; spatial statistics; statistical graphics; visualization; 2-VARIABLE MAPS; STATISTICS; COLOR;
D O I
10.1002/sta4.150
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In statistics, we quantify uncertainty to help determine the accuracy of estimates, yet this crucial piece of information is rarely included on maps visualizing areal data estimates. We develop and present three approaches to include uncertainty on maps: (1) the bivariate choropleth map repurposed to visualize uncertainty; (2) the pixelation of counties to include values within an estimate's margin of error; and (3) the rotation of a glyph, located at a county's centroid, to represent an estimate's uncertainty. The second method is presented as both a static map and visuanimation. We use American Community Survey estimates and their corresponding margins of error to demonstrate the methods and highlight the importance of visualizing uncertainty in areal data. An extensive online supplement provides the R code necessary to produce the maps presented in this article as well as alternative versions of them. Copyright (c) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:292 / 302
页数:11
相关论文
共 2 条
  • [1] Bivariate colour maps for visualizing climate data
    Teuling, A. J.
    Stoeckli, R.
    Seneviratne, S. I.
    [J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2011, 31 (09) : 1408 - 1412
  • [2] Uncertainty in Geographic Data on Bivariate Maps: An Examination of Visualization Preference and Decision Making
    Scholz, Ruojing W.
    Lu, Yongmei
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2014, 3 (04): : 1180 - 1197