Standardized Reporting of Machine Learning Applications in Urology: The STREAM-URO Framework

被引:34
|
作者
Kwong, Jethro C. C. [1 ,2 ]
McLoughlin, Louise C. [1 ,2 ]
Haider, Masoom [3 ,4 ]
Goldenberg, Mitchell G. [1 ]
Erdman, Lauren [5 ,6 ]
Rickard, Mandy [7 ]
Lorenzo, Armando J. [1 ,7 ]
Hung, Andrew J. [8 ]
Farcas, Monica [1 ]
Goldenberg, Larry [9 ]
Nguan, Chris [9 ]
Braga, Luis H. [10 ]
Mamdani, Muhammad [2 ,6 ,11 ]
Goldenberg, Anna [2 ,5 ,6 ]
Kulkarni, Girish S. [1 ,2 ]
机构
[1] Univ Toronto, Dept Surg, Div Urol, Toronto, ON, Canada
[2] Univ Toronto, Temerty Ctr AI Res & Educ Med, Toronto, ON, Canada
[3] Univ Toronto, Joint Dept Med Imaging, Toronto, ON, Canada
[4] Sinai Hlth Syst, Radi & Oncol Imaging Res Lab, AI, Lunenfeld Tanenbaum Res Inst, Toronto, ON, Canada
[5] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[6] Vector Inst, Toronto, ON, Canada
[7] Hosp Sick Children, Div Urol, Toronto, ON, Canada
[8] Univ Southern Calif, Ctr Robot Simulat & Educ, Catherine & Joseph Aresty Dept Urol, Inst Urol, Los Angeles, CA USA
[9] Univ British Columbia, Dept Urol Sci, Vancouver, BC, Canada
[10] McMaster Univ, Div Urol, Dept Surg, Toronto, ON, Canada
[11] Unity Hlth Toronto, Toronto, ON, Canada
来源
EUROPEAN UROLOGY FOCUS | 2021年 / 7卷 / 04期
关键词
ARTIFICIAL-INTELLIGENCE; HEALTH;
D O I
10.1016/j.euf.2021.07.004
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:672 / 682
页数:11
相关论文
共 50 条
  • [1] Application of STREAM-URO and APPRAISE-AI reporting standards for artificial intelligence studies in pediatric urology: A case example with pediatric hydronephrosis
    Khondker, Adree
    Kwong, Jethro C. C.
    Rickard, Mandy
    Erdman, Lauren
    Kim, Jin K.
    Ahmad, Ihtisham
    Weaver, John
    Fernandez, Nicolas
    Tasian, Gregory E.
    Kulkarni, Girish S.
    Lorenzo, Armando J.
    JOURNAL OF PEDIATRIC UROLOGY, 2024, 20 (03) : 455 - 467
  • [2] A Framework for Form Applications that Use Machine Learning
    Aguiar, Guilherme
    Vilain, Patricia
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2018, PT I, 2018, 11314 : 773 - 782
  • [3] Machine learning applications in detection and diagnosis of urology cancers: a systematic literature review
    Lubbad, M.
    Karaboga, D.
    Basturk, A.
    Akay, B.
    Nalbantoglu, U.
    Pacal, I.
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (12): : 6355 - 6379
  • [4] Machine learning applications in detection and diagnosis of urology cancers: a systematic literature review
    M. Lubbad
    D. Karaboga
    A. Basturk
    B. Akay
    U. Nalbantoglu
    I. Pacal
    Neural Computing and Applications, 2024, 36 : 6355 - 6379
  • [5] MLPro - An integrative middleware framework for standardized machine learning tasks in Python']Python
    Arend, Detlef
    Diprasetya, Mochammad Rizky
    Yuwono, Steve
    Schwung, Andreas
    SOFTWARE IMPACTS, 2022, 14
  • [6] Prostate-specific Membrane Antigen Interpretation Criteria, Standardized Reporting, and the Use of Machine Learning
    Seifert, Robert
    Gafita, Andrei
    Solnes, Lilja B.
    Iagaru, Andrei
    PET CLINICS, 2024, 19 (03) : 363 - 369
  • [7] Towards Stream-based Reasoning and Machine Learning for IoT Applications
    Endler, Markus
    Briot, Jean-Pierre
    de Almeida, Vitor P.
    Silva e Silva, Francisco
    Haeusler, Edward H.
    PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), 2017, : 202 - 209
  • [8] A systematic review of the applications of Expert Systems (ES) and machine learning (ML) in clinical urology
    Hesham Salem
    Daniele Soria
    Jonathan N. Lund
    Amir Awwad
    BMC Medical Informatics and Decision Making, 21
  • [9] A systematic review of the applications of Expert Systems (ES) and machine learning (ML) in clinical urology
    Salem, Hesham
    Soria, Daniele
    Lund, Jonathan N.
    Awwad, Amir
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [10] Feature Engineering and Machine Learning Framework for DDoS Attack Detection in the Standardized Internet of Things
    Kamaldeep, Manisha
    Malik, Manisha
    Dutta, Maitreyee
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (10) : 8658 - 8669