Feynman's propagator in Schwinger's picture of Quantum Mechanics

被引:7
|
作者
Ciaglia, F. M. [1 ]
Di Cosmo, F. [1 ,2 ]
Ibort, A. [1 ,2 ]
Marmo, G. [3 ,4 ,5 ]
Schiavone, L. [1 ,5 ,6 ]
Zampini, A. [4 ,5 ,6 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Ave Univ 30, Madrid 28911, Spain
[2] UCM, ICMAT Inst Ciencias Matemat, CSIC, UAM,UC3M, Campus Cantoblanco UAM,C Nicolas Cabrera 13-15, Madrid 28049, Spain
[3] Univ Napoli Federico II, Dipartimento Fis Ettore Pancini, Naples, Italy
[4] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy
[5] Complesso Univ Monte S Angelo, Via Cintia, I-80126 Naples, Italy
[6] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, Naples, Italy
关键词
Groupoids; groupoid algebras; q-Lagrangian; states; Feynman's propagator;
D O I
10.1142/S021773232150187X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A novel derivation of Feynman's sum-over-histories construction of the quantum propagator using the groupoidal description of Schwinger picture of Quantum Mechanics is presented. It is shown that such construction corresponds to the GNS representation of a natural family of states called Dirac-Feynman-Schwinger (DFS) states. Such states are obtained from a q-Lagrangian function l on the groupoid of configurations of the system. The groupoid of histories of the system is constructed and the q-Lagrangian l allows us to define a DFS state on the algebra of the groupoid. The particular instance of the groupoid of pairs of a Riemannian manifold serves to illustrate Feynman's original derivation of the propagator for a point particle described by a classical Lagrangian L.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Quantum tomography and Schwinger's picture of quantum mechanics*
    Ciaglia, F. M.
    Di Cosmo, F.
    Ibort, A.
    Marmo, G.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (27)
  • [2] Causality in Schwinger's Picture of Quantum Mechanics
    Ciaglia, Florio M.
    Di Cosmo, Fabio
    Ibort, Alberto
    Marmo, Giuseppe
    Schiavone, Luca
    Zampini, Alessandro
    [J]. ENTROPY, 2022, 24 (01)
  • [3] Schwinger's picture of quantum mechanics I: Groupoids
    Ciaglia, F. M.
    Ibort, A.
    Marmo, G.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (08)
  • [4] Schwinger's picture of quantum mechanics III: The statistical interpretation
    Ciaglia, F. M.
    Ibort, A.
    Marmo, G.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (11)
  • [5] Schwinger's picture of quantum mechanics IV: Composition and independence
    Ciaglia, F. M.
    Di Cosmo, F.
    Ibort, A.
    Marmo, G.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (04)
  • [6] Schwinger's picture of quantum mechanics II: Algebras and observables
    Ciaglia, F. M.
    Ibort, A.
    Marmo, G.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (09)
  • [7] SCHWINGER'S PICTURE OF QUANTUM MECHANICS: 2-GROUPOIDS AND SYMMETRIES
    Ciaglia, Florio M.
    DI Cosmo, Fabio
    Ibort, Alberto
    Marmo, Giuseppe
    Schiavone, Luca
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2021, 13 (03): : 333 - 354
  • [8] A gentle introduction to Schwinger's formulation of quantum mechanics: The groupoid picture
    Ciaglia, F. M.
    Ibort, A.
    Marmo, G.
    [J]. MODERN PHYSICS LETTERS A, 2018, 33 (20)
  • [9] Feynman's simple quantum mechanics
    Taylor, EF
    [J]. CHANGING ROLE OF PHYSICS DEPARTMENTS IN MODERN UNIVERSITIES - PROCEEDINGS OF INTERNATIONAL CONFERENCE ON UNDERGRADUATE PHYSICS EDUCATION, PTS 1 AND 2, 1997, (399): : 1093 - 1099
  • [10] Dispositions as the foundation for Feynman's formulation of Quantum Mechanics
    Aronson, JL
    [J]. DIALECTICA, 1997, 51 (01) : 35 - 64