Parsimonious Classification Via Generalized Linear Mixed Models

被引:1
|
作者
Kauermann, G. [1 ]
Ormerod, J. T. [2 ]
Wand, M. P. [3 ]
机构
[1] Univ Bielefeld, Fac Econ, D-33501 Bielefeld, Germany
[2] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[3] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
Akaike Information Criterion; Feature selection; Generalized additive models; Penalized splines; Supervised learning; Model selection; Rao statistics; Variance components; AKAIKE INFORMATION; REGRESSION; SPLINES;
D O I
10.1007/s00357-010-9045-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We devise a classification algorithm based on generalized linear mixed model (GLMM) technology. The algorithm incorporates spline smoothing, additive model-type structures and model selection. For reasons of speed we employ the Laplace approximation, rather than Monte Carlo methods. Tests on real and simulated data show the algorithm to have good classification performance. Moreover, the resulting classifiers are generally interpretable and parsimonious.
引用
收藏
页码:89 / 110
页数:22
相关论文
共 50 条
  • [1] Parsimonious Classification Via Generalized Linear Mixed Models
    G. Kauermann
    J. T. Ormerod
    M. P. Wand
    [J]. Journal of Classification, 2010, 27 : 89 - 110
  • [2] Classification of territory risk by generalized linear and generalized linear mixed models
    Xie, Shengkun
    Gan, Chong
    [J]. JOURNAL OF MANAGEMENT ANALYTICS, 2023, 10 (02) : 223 - 246
  • [3] Parsimonious Generalized Linear Gaussian Cluster-Weighted Models
    Punzo, Antonio
    Ingrassia, Salvatore
    [J]. ADVANCES IN STATISTICAL MODELS FOR DATA ANALYSIS, 2015, : 201 - 209
  • [4] Bayesian parsimonious covariance estimation for hierarchical linear mixed models
    Sylvia Frühwirth-Schnatter
    Regina Tüchler
    [J]. Statistics and Computing, 2008, 18 : 1 - 13
  • [5] Bayesian parsimonious covariance estimation for hierarchical linear mixed models
    Fruhwirth-Schnatter, Sylvia
    Tuchler, Regina
    [J]. STATISTICS AND COMPUTING, 2008, 18 (01) : 1 - 13
  • [6] Generalized, linear and mixed models.
    Land, KC
    [J]. SOCIOLOGICAL METHODS & RESEARCH, 2002, 30 (04) : 583 - 584
  • [7] GENERALIZED LINEAR MIXED MODELS IN BIOSTATISTICS
    CLAYTON, D
    [J]. STATISTICIAN, 1992, 41 (03): : 327 - 328
  • [8] Parsimonious multiscale classification models
    Alsberg, BK
    [J]. JOURNAL OF CHEMOMETRICS, 2000, 14 (5-6) : 529 - 539
  • [9] Robust estimation in generalized linear mixed models
    Yau, KKW
    Kuk, AYC
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 : 101 - 117
  • [10] Actuarial statistics with generalized linear mixed models
    Antonio, Katrien
    Beirlant, Jan
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2007, 40 (01): : 58 - 76