An ideal compressible magnetohydrodynamic solver with parallel block-structured adaptive mesh refinement

被引:6
|
作者
Lopes, Muller Moreira [1 ]
Deiterding, Ralf [2 ]
Fontes Gomes, Anna Karina [1 ]
Mendes, Odim [1 ]
Domingues, Margarete O. [1 ]
机构
[1] Natl Inst Space Res INPE, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[2] Univ Southampton, Aerodynam & Flight Mech Res Grp, Southampton SO17 1BJ, Hants, England
基金
巴西圣保罗研究基金会;
关键词
AMROC; Magnetohydrodynamics; Finite-volume; Mesh refinement; SCHEME; MHD;
D O I
10.1016/j.compfluid.2018.01.032
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an adaptive parallel solver for the numerical simulation of ideal magnetohydrodynamics in two and three space dimensions. The discretisation uses a finite volume scheme based on a Cartesian mesh and an explicit compact Runge-Kutta scheme for time integration. Numerically, a generalized Lagrangian multiplier approach with a mixed hyperbolic-parabolic correction is used to guarantee a control on the incompressibility of the magnetic field. We implement the solver in the AMROC (Adaptive Mesh Refinement in Object-oriented C++) framework that uses a structured adaptive mesh refinement (SAMR) method discretisation-independent and is fully parallelised for distributed memory systems. Moreover, AMROC is a modular framework providing manageability, extensibility and efficiency. In this paper, we give an overview of the ideal magnetohydrodynamics solver developed in this framework and its capabilities. We also include an example of this solver's verification with other codes and its numerical and computational performance. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:293 / 298
页数:6
相关论文
共 50 条
  • [1] A Block-Structured Adaptive Mesh Refinement Solver for Morphodynamic Modeling
    Cowles, Geoffrey W.
    [J]. JOURNAL OF COASTAL RESEARCH, 2013, 29 (03) : 727 - 735
  • [2] An Implicit Solver on A Parallel Block-Structured Adaptive Mesh Grid for FLASH
    Lee, Dongwook
    Gopal, Shravan
    Mohapatra, Prateeti
    [J]. NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2011, 2011, 459 : 334 - +
  • [3] Scalable parallel regridding algorithms for block-structured adaptive mesh refinement
    Luitjens, J.
    Berzins, M.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2011, 23 (13): : 1522 - 1537
  • [4] Massively parallel finite difference elasticity using block-structured adaptive mesh refinement with a geometric multigrid solver
    Runnels, Brandon
    Agrawal, Vinamra
    Zhang, Weiqun
    Almgren, Ann
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 427
  • [5] EXTREME-SCALE BLOCK-STRUCTURED ADAPTIVE MESH REFINEMENT
    Schornbaum, Florian
    Ruede, Ulrich
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : C358 - C387
  • [6] Application of Block-structured Adaptive Mesh Refinement to Particle Simulation
    Usui, Hideyuki
    Kito, Saki
    Nunami, Masanori
    Matsumoto, Masaharu
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 2527 - 2536
  • [7] Block-structured adaptive mesh refinement algorithms for Vlasov simulation
    Hittinger, J. A. F.
    Banks, J. W.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 241 : 118 - 140
  • [8] AMReX: Block-structured adaptive mesh refinement for multiphysics applications
    Zhang, Weiqun
    Myers, Andrew
    Gott, Kevin
    Almgreni, Ann
    Bell, John
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2021, 35 (06): : 508 - 526
  • [9] BLOCK-STRUCTURED ADAPTIVE MESH REFINEMENT ON CURVILINEAR-ORTHOGONAL GRIDS
    Ziegler, Udo
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03): : C102 - C121
  • [10] Parthenon-a performance portable block-structured adaptive mesh refinement framework
    Grete, Philipp
    Dolence, Joshua C.
    Miller, Jonah M.
    Brown, Joshua
    Ryan, Ben
    Gaspar, Andrew
    Glines, Forrest
    Swaminarayan, Sriram
    Lippuner, Jonas
    Solomon, Clell J.
    Shipman, Galen
    Junghans, Christoph
    Holladay, Daniel
    Stone, James M.
    Roberts, Luke F.
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2023, 37 (05): : 465 - 486