Quasi- periodic solutions for the forced Kirchhoff equation on Td

被引:20
|
作者
Corsi, Livia [1 ]
Montalto, Riccardo [2 ]
机构
[1] Georgia Inst Technol, Sch Math, 686 Cherry St NW, Atlanta, GA 30332 USA
[2] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Kirchhoff equation; quasi-linear PDEs; quasi-periodic solutions; infinite-dimensional dynamical systems; Nash-Moser theory; PARTIAL-DIFFERENTIAL-EQUATIONS; NONLINEAR-WAVE EQUATIONS; SCHRODINGER-EQUATIONS; KAM; PERTURBATIONS; THEOREM; SINGULARITIES; KDV; NLS;
D O I
10.1088/1361-6544/aad6fe
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of small-amplitude quasi-periodic solutions with Sobolev regularity, for the d-dimensional forced Kirchhoff equation with periodic boundary conditions. This is the first result of this type for a quasi-linear equation in high dimension. The proof is based on a Nash-Moser scheme in Sobolev class and a regularization procedure combined with a multiscale analysis in order to solve the linearized problem at any approximate solution.
引用
收藏
页码:5075 / 5109
页数:35
相关论文
共 50 条