The nondegenerate generalized Kahler Calabi-Yau problem

被引:6
|
作者
Apostolov, Vestislav [1 ]
Streets, Jeffrey [2 ]
机构
[1] Univ Quebec Montreal, Dept Math, Case Postale 8888,Succursale Ctr Ville, Montreal, PQ H3C 3P8, Canada
[2] Univ Calif Irvine, Dept Math, Rowland Hall, Irvine, CA 92617 USA
基金
加拿大自然科学与工程研究理事会;
关键词
HOLOMORPHIC SYMPLECTIC-MANIFOLDS; VANISHING THEOREMS; COMPLEX STRUCTURES; GEOMETRY; CONNECTIONS; CURVATURE; EXAMPLES; METRICS; FLOW;
D O I
10.1515/crelle-2021-0016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate a Calabi-Yau-type conjecture in generalized Kahler geometry, focusing on the case of nondegenerate Poisson structure. After defining natural Hamiltonian deformation spaces for generalized Kahler structures generalizing the notion of Kahler class, we conjecture unique solvability of Gualtieri's Calabi-Yau equation within this class. We establish the uniqueness, and moreover show that all such solutions are actually hyper-Kahler metrics. We furthermore establish a GIT framework for this problem, interpreting solutions of this equation as zeroes of a moment map associated to a Hamiltonian action and finding a Kempf-Ness functional. Lastly we indicate the naturality of generalized Kahler-Ricci flow in this setting, showing that it evolves within the given Hamiltonian deformation class, and that the Kempf-Ness functional is monotone, so that the only possible fixed points for the flow are hyper-Kahler metrics. On a hyper-Kahler background, we establish global existence and weak convergence of the flow.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 50 条
  • [1] The Calabi-Yau theorem and Kahler currents
    Tosatti, Valentino
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 20 (02) : 381 - 404
  • [2] THE KAHLER CONE ON CALABI-YAU THREEFOLDS
    WILSON, PMH
    INVENTIONES MATHEMATICAE, 1992, 107 (03) : 561 - 583
  • [3] ON A GENERALIZED CALABI-YAU EQUATION
    Wang, Hongyu
    Zhu, Peng
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (05) : 1595 - 1615
  • [4] Generalized Calabi-Yau manifolds
    Hitchin, N
    QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 : 281 - 308
  • [5] Exact Kahler potential for Calabi-Yau fourfolds
    Honma, Yoshinori
    Manabe, Masahide
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05):
  • [6] On generalized Calabi-Yau nilmanifolds
    Catellani, Giulio
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (01) : 39 - 57
  • [7] On generalized Calabi-Yau nilmanifolds
    Giulio Catellani
    Annali di Matematica Pura ed Applicata, 2008, 187 : 39 - 57
  • [8] Non-Kahler Calabi-Yau Manifolds
    Tseng, Li-Sheng
    Yau, Shing-Tung
    STRING-MATH 2011, 2012, 85 : 241 - +
  • [9] Kahler Forms for Families of Calabi-Yau Manifolds
    Braun, Matthias
    Choi, Young-Jun
    Schumacher, Georg
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2020, 56 (01) : 1 - 13
  • [10] Calabi-Yau and fractional Calabi-Yau categories
    Kuznetsov, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 239 - 267