Hamiltonian Monte Carlo with Constrained Molecular Dynamics as Gibbs Sampling

被引:4
|
作者
Spiridon, Laurentiu [1 ,2 ]
Minh, David D. L. [1 ]
机构
[1] IIT, Dept Chem, Chicago, IL 60616 USA
[2] Romanian Acad, Inst Biochem, Dept Bioinformat & Struct Biochem, Bucharest 060031, Romania
基金
美国国家卫生研究院;
关键词
CLASSICAL STATISTICAL-MECHANICS; LINKED RIGID BODIES; POLYMER-CHAIN; EFFICIENT GENERATION; STRUCTURE REFINEMENT; BROWNIAN DYNAMICS; AM1-BCC MODEL; FORCE-FIELD; SIMULATION; ALGORITHM;
D O I
10.1021/acs.jctc.7b00570
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Compared to fully flexible molecular dynamics, simulations of constrained systems can use larger time steps and focus kinetic energy on soft degrees of freedom. Achieving ergodic sampling from the Boltzmann distribution, however, has proven challenging. Using recent generalizations of the equipartition principle and Fixman potential, here we implement Hamiltonian Monte Carlo based on constrained molecular dynamics as a Gibbs sampling move. By mixing Hamiltonian Monte Carlo based on fully flexible and torsional dynamics, we are able to reproduce free energy landscapes of simple model systems and enhance sampling of macrocycles.
引用
收藏
页码:4649 / 4659
页数:11
相关论文
共 50 条
  • [1] Nested Sampling with Constrained Hamiltonian Monte Carlo
    Betancourt, Michael
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2010, 1305 : 165 - 172
  • [2] Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
    Kook, Yunbum
    Lee, Yin Tat
    Shen, Ruoqi
    Vempala, Santosh S.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [3] Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo
    Noble, Maxence
    De Bortoli, Valentin
    Durmus, Alain Oliviero
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [4] Monte Carlo vs molecular dynamics for conformational sampling
    Jorgensen, WL
    TiradoRives, J
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (34): : 14508 - 14513
  • [5] On Using Hamiltonian Monte Carlo Sampling for RL
    Madhushani, Udari
    Dey, Biswadip
    Leonard, Naomi Ehrich
    Chakraborty, Amit
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 6640 - 6645
  • [6] POPULATION MONTE CARLO METHODOLOGY A LA GIBBS SAMPLING
    Djuric, Petar M.
    Shen, Bingxin
    Bugallo, Monica F.
    [J]. 19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 669 - 673
  • [7] Incorporating Qualitative Information into Quantitative Estimation via Sequentially Constrained Hamiltonian Monte Carlo Sampling
    Yi, Daqing
    Choudhury, Shushman
    Srinivasa, Siddhartha
    [J]. 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 4648 - 4655
  • [8] An ergodic sampling scheme for constrained Hamiltonian systems with applications to molecular dynamics
    Hartmann, Carsten
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (04) : 687 - 711
  • [9] An Ergodic Sampling Scheme for Constrained Hamiltonian Systems with Applications to Molecular Dynamics
    Carsten Hartmann
    [J]. Journal of Statistical Physics, 2008, 130 : 687 - 711
  • [10] Spherical Hamiltonian Monte Carlo for Constrained Target Distributions
    Lan, Shiwei
    Zhou, Bo
    Shahbaba, Babak
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 1), 2014, 32