High-surface-area biocarbon for reversible on-board storage of natural gas and hydrogen

被引:0
|
作者
Pfeifer, Peter [1 ]
Burress, Jacob W. [1 ]
Wood, Mikael B. [1 ]
Lapilli, Cintia M. [1 ]
Barker, Sarah A. [1 ]
Pobst, Jeffrey S. [1 ]
Cepell, Raina J. [1 ]
Wexler, Carlos [1 ]
Shah, Parag S. [2 ]
Gordon, Michael J. [2 ]
Sup-Pes, Galen J. [2 ]
Buckley, S. Philip [3 ]
Radke, Darren J. [3 ]
Ilavsky, Jan [4 ]
Dillon, Anne C. [5 ]
Parilla, Philip A. [5 ]
Benham, Mi-Chael [6 ]
Roth, Michael W. [7 ]
机构
[1] Univ Missouri, Dept Phys, Columbia, MO 65211 USA
[2] Univ Missouri, Dept Chem Engn, Columbia, MO 65211 USA
[3] Midwest Res Inst, Kansas City, MO 64110 USA
[4] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[5] Natl Renewable Energy Lab, Golden, CO 80401 USA
[6] Hiden Isochema Ltd, Warrington WA5 7TN, Cheshire, England
[7] Univ Northern Iowa, Dept Phys, Cedar Falls, IA 50614 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An overview is given of the development of advanced nanoporous carbons as storage materials for natural-gas (methane) and molecular hydrogen in on-board fuel tanks for next-generation clean automobiles.' The carbons are produced in a multi-step process from corncob, have surface areas of up to 3500 m(2)/g, porosities of up to 0.8, and reversibly store, by physisorption, record amounts of methane and hydrogen. Current best gravimetric and volumetric storage capacities are: 250 g CH4/kg carbon and 130 g CH4/liter carbon (199 V/V) at 35 bar and 293 K; and 80 g H-2/kg carbon and 47 g H-2/liter carbon at 47 bar and 77 K. This is the first time the DOE methane storage target of 180 V/V at 35 bar and ambient temperature has been reached and exceeded. The hydrogen values compare favorably with the 2010 DOE targets for hydrogen, excluding cryogenic components. A prototype adsorbed natural gas (ANG) tank, loaded with carbon monoliths produced accordingly and currently undergoing a road test in Kansas City, is described. A preliminary analysis of the surface and pore structure is given that may shed light on the mechanisms leading to the extraordinary storage capacities of these materials. analysis includes pore-size distributions from nitrogen adsorption isotherms; spatial organization of pores across the entire solid from small-angle x-ray scattering (SAXS); pore entrances from scanning electron microscopy (SEM) and transmission electron microscopy (TEM); H-2 binding energies from temperature-programmed desorption (TPD); and analysis of surface defects from Raman spectra. For future materials, expected to have higher H-2 binding energies via appropriate surface functionalization, preliminary projections of H-2 storage capacities based on molecular dynamics simulations of adsorption of H-2 on graphite, are reported.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 50 条
  • [1] Metal-organic frameworks for on-board storage of hydrogen and natural gas
    Bloch, Eric D.
    Mason, Jarad A.
    Kapelewski, Matthew T.
    Sumida, Kenji
    Gonzalez, Miguel I.
    Taylor, Mercedes K.
    Gygi, David
    Queen, Wendy L.
    Ye, Jinxing
    Long, Jeffrey R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [2] Metal-organic frameworks for on-board storage of hydrogen and natural gas
    Mason, Jarad
    Bloch, Eric
    Kapelewski, Matthew
    Taylor, Mercedes
    Oktawiec, Julia
    Sumida, Kenji
    Gonzalez, Miguel
    Gygi, David
    Queen, Wendy
    Long, Jeffrey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [3] High-Surface-Area Nanoporous Boron Carbon Nitrides for Hydrogen Storage
    Portehault, David
    Giordano, Cristina
    Gervais, Christel
    Senkovska, Irena
    Kaskel, Stefan
    Sanchez, Clement
    Antonietti, Markus
    ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (11) : 1827 - 1833
  • [4] Toward new candidates for hydrogen storage: High-surface-area carbon aerogels
    Kabbour, Houria
    Baumann, Theodore F.
    Satcher, Joe H., Jr.
    Saulnier, Angelique
    Ahn, Channing C.
    CHEMISTRY OF MATERIALS, 2006, 18 (26) : 6085 - 6087
  • [5] High surface area biocarbon monoliths for methane storage
    Michaelis, Elizabeth
    Nie, Renfeng
    Austin, Douglas
    Yue, Yanfeng
    GREEN ENERGY & ENVIRONMENT, 2023, 8 (05) : 1308 - 1324
  • [6] High surface area nanoporous polymers for reversible hydrogen storage
    Germain, Jonathan
    Hradil, Jiri
    Frechet, Jean M. J.
    Svec, Frantisek
    CHEMISTRY OF MATERIALS, 2006, 18 (18) : 4430 - 4435
  • [7] High surface area biocarbon monoliths for methane storage
    Elizabeth Michaelis
    Renfeng Nie
    Douglas Austin
    Yanfeng Yue
    Green Energy & Environment, 2023, 8 (05) : 1308 - 1324
  • [8] MICROSPHERES FOR ON-BOARD HYDROGEN STORAGE
    DURET, B
    SAUDIN, A
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1994, 19 (09) : 757 - 764
  • [9] Hypothetical High-Surface-Area Carbons with Exceptional Hydrogen Storage Capacities: Open Carbon Frameworks
    Kuchta, Bogdan
    Firlej, Lucyna
    Mohammadhosseini, Ali
    Boulet, Pascal
    Beckner, Matthew
    Romanos, Jimmy
    Pfeifer, Peter
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (36) : 15130 - 15137
  • [10] CHALLENGES IN DEVELOPING LINERLESS COMPOSITE GAS CYLINDER FOR ON-BOARD HYDROGEN STORAGE
    Ge, Zhoutian
    Yuan, Yutong
    Shi, Jianfeng
    PROCEEDINGS OF ASME 2022 PRESSURE VESSELS AND PIPING CONFERENCE, PVP2022, VOL 1, 2022,