Quantum-memory-enhanced dissipative entanglement creation in nonequilibrium steady states

被引:13
|
作者
Heineken, Daniel [1 ]
Beyer, Konstantin [1 ]
Luoma, Kimmo [1 ,2 ]
Strunz, Walter T. [1 ]
机构
[1] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
[2] Univ Turku, Turku Ctr Quantum Phys, Dept Phys & Astron, FI-20014 Turun, Finland
关键词
Quantum entanglement;
D O I
10.1103/PhysRevA.104.052426
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This article investigates dissipative preparation of entangled nonequilibrium steady states (NESS). We con-struct a collision model where the open system consists of two qubits which are coupled to heat reservoirs with different temperatures. The baths are modeled by sequences of qubits interacting with the open system. The model can be studied in different dynamical regimes: with and without environmental memory effects. We report that only a certain bath temperature range allows for entangled NESS. Furthermore, we obtain minimal and maximal critical values for the heat current through the system. Surprisingly, quantum memory effects play a crucial role in the long-time limit. First, memory effects broaden the parameter region where quantum correlated NESS may be dissipatively prepared and, second, they increase the attainable concurrence. Most remarkably, we find a heat current range that does not only allow, but even guarantees that the NESS is entangled. Thus, the heat current can witness entanglement of nonequilibrium steady states.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quantum-Memory-Enhanced Preparation of Nonlocal Graph States
    Zhang, Sheng
    Wu, Yu-Kai
    Li, Chang
    Jiang, Nan
    Pu, Yun-Fei
    Duan, Lu-Ming
    PHYSICAL REVIEW LETTERS, 2022, 128 (08)
  • [2] Entanglement versus Bell nonlocality of quantum nonequilibrium steady states
    Zhang, Kun
    Wang, Jin
    QUANTUM INFORMATION PROCESSING, 2021, 20 (04)
  • [3] Entanglement versus Bell nonlocality of quantum nonequilibrium steady states
    Kun Zhang
    Jin Wang
    Quantum Information Processing, 2021, 20
  • [4] General description for nonequilibrium steady states in periodically driven dissipative quantum systems
    Ikeda, Tatsuhiko N.
    Sato, Masahiro
    SCIENCE ADVANCES, 2020, 6 (27):
  • [5] Obtaining pure steady states in nonequilibrium quantum systems with strong dissipative couplings
    Popkov, Vladislav
    Presilla, Carlo
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [6] Asymmetric steerability of quantum equilibrium and nonequilibrium steady states through entanglement detection
    Zhang, Kun
    Wang, Jin
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [7] Hysteresis in nonequilibrium steady states:: the role of dissipative couplings
    Hernández-Lemus, E
    Orgaz, E
    REVISTA MEXICANA DE FISICA, 2002, 48 : 38 - 45
  • [8] Enhanced Sampling of Nonequilibrium Steady States
    Dickson, Alex
    Dinner, Aaron R.
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 61, 2010, 61 : 441 - 459
  • [9] Steady-state entanglement enhanced by a dissipative ancilla
    Fischbach, Joachim
    Freyberger, Matthias
    PHYSICAL REVIEW A, 2015, 92 (05)
  • [10] Creation of memory–memory entanglement in a metropolitan quantum network
    Liu J.-L.
    Luo X.-Y.
    Yu Y.
    Wang C.-Y.
    Wang B.
    Hu Y.
    Li J.
    Zheng M.-Y.
    Yao B.
    Yan Z.
    Teng D.
    Jiang J.-W.
    Liu X.-B.
    Xie X.-P.
    Zhang J.
    Mao Q.-H.
    Jiang X.
    Zhang Q.
    Bao X.-H.
    Pan J.-W.
    Nature, 2024, 629 (8012) : 579 - 585