Parameter estimation and fractional derivatives of dengue transmission model

被引:23
|
作者
Windarto [1 ]
Khan, Muhammad Altaf [2 ]
Fatmawati [1 ]
机构
[1] Univ Airlangga, Fac Sci & Technol, Dept Math, Surabaya 60115, Indonesia
[2] Univ Free State, Fac Nat & Agr Sci, Bloemfontein, South Africa
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 03期
关键词
dengue model; parameter estimation; particle swarm optimization method; Atangana-Baleanu derivative;
D O I
10.3934/math.2020178
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a parameter estimation of dengue fever transmission model using a particle swarm optimization method. This method is applied to estimate the parameters of the host-vector and SIR type dengue transmission models by using cumulative data of dengue patient in East Java province, Indonesia. Based on the parameter values, the basic reproduction number of both models are greater than one and obtained their value for SIR is R-0 = 1.4159 and for vector host is R-0 = 1.1474. We then formulate the models in fractional Atangana-Baleanu derivative that possess the property of nonlocal and nonsingular kernel that has been remained effective to many real-life problems. A numerical procedure for the solution of the model SIR model is shown. Some specific numerical values are considered to obtain the graphical results for both the SIR and Vector Host model. We show that the model vector host provide good results for data fitting than that of the SIR model.
引用
收藏
页码:2758 / 2779
页数:22
相关论文
共 50 条
  • [1] The Influence of Anthropogenic and Environmental Disturbances on Parameter Estimation of a Dengue Transmission Model
    Catano-Lopez, Alexandra
    Rojas-Diaz, Daniel
    Velez, Carlos M.
    [J]. TROPICAL MEDICINE AND INFECTIOUS DISEASE, 2023, 8 (01)
  • [2] Modeling the transmission of dengue infection through fractional derivatives
    Jan, Rashid
    Khan, Muhammad Altaf
    Kumam, Poom
    Thounthong, Phatiphat
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 127 : 189 - 216
  • [3] A fractional order SIR epidemic model for dengue transmission
    Hamdan, Nur 'Izzati
    Kilicman, Adem
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 114 : 55 - 62
  • [4] Novel parameter estimation techniques for a multi-term fractional dynamical epidemic model of dengue fever
    T. Li
    Y. Wang
    F. Liu
    I. Turner
    [J]. Numerical Algorithms, 2019, 82 : 1467 - 1495
  • [5] Novel parameter estimation techniques for a multi-term fractional dynamical epidemic model of dengue fever
    Li, T.
    Wang, Y.
    Liu, F.
    Turner, I
    [J]. NUMERICAL ALGORITHMS, 2019, 82 (04) : 1467 - 1495
  • [6] Mathematical Modelling of Dengue Transmission with Intervention Strategies Using Fractional Derivatives
    Nur ’Izzati Hamdan
    Adem Kilicman
    [J]. Bulletin of Mathematical Biology, 2022, 84
  • [7] Mathematical Modelling of Dengue Transmission with Intervention Strategies Using Fractional Derivatives
    Hamdan, Nur'Izzati
    Kilicman, Adem
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (12)
  • [8] Parameter estimation for fractional dispersion model for rivers
    Deng, Zhiqiang
    Bengtsson, Lars
    Singh, Vijay P.
    [J]. ENVIRONMENTAL FLUID MECHANICS, 2006, 6 (05) : 451 - 475
  • [9] Parameter estimation for fractional dispersion model for rivers
    Zhiqiang Deng
    Lars Bengtsson
    Vijay P. Singh
    [J]. Environmental Fluid Mechanics, 2006, 6 : 451 - 475
  • [10] Fractional Derivatives in Dengue Epidemics
    Pooseh, Shakoor
    Rodrigues, Helena Sofia
    Torres, Delfim F. M.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389