False discovery rate control for non-positively regression dependent test statistics
被引:15
|
作者:
Yekutieli, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Sch Math Sci, Dept Stat & Operat Res, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Sch Math Sci, Dept Stat & Operat Res, IL-69978 Tel Aviv, Israel
Yekutieli, Daniel
[1
]
机构:
[1] Tel Aviv Univ, Sch Math Sci, Dept Stat & Operat Res, IL-69978 Tel Aviv, Israel
false discovery rate;
pairwise comparisons;
dependent test statistics;
D O I:
10.1016/j.jspi.2007.06.006
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this paper we present a modification of the Benjamini and Hochberg false discovery rate controlling procedure for testing non-positive dependent test statistics. The new testing procedure makes use of the same series of linearly increasing critical values. Yet, in the new procedure the set of p-values is divided into Subsets of positively dependent p-values, and each subset of p-values is separately sorted and compared to the series of critical values. In the first part of the paper we introduce the new testing methodology, discuss the technical issues needed to apply the new approach, and apply it to data from a genetic experiment. In the second part of the paper we discuss pairwise comparisons. We introduce FDR controlling procedures for testing pairwise comparisons. We apply these procedures to an example extensively studied in the statistical literature, and to test pairwise comparisons in gene expression data. We also use the new testing procedure to prove that the Simes procedure call, in some cases, be used to test all pairwise comparisons. The control over the FDR has proven to be a successful alternative to control over the family wise error rate in the analysis of large data sets; the Benjamini and Hochberg procedure has also made the application of the Simes procedure to test the complete null hypothesis unnecessary. Our main message in this paper is that a more conservative approach may be needed for testing non-positively dependent test statistics: apply the Simes procedure to test the complete null hypothesis; if the complete null hypothesis is rejected apply the new testing approach to determine which of the null hypotheses are false. It will probably yield less discoveries, however it ensures control over the FDR. (C) 2007 Elsevier B.V. All rights reserved.
机构:
Temple Univ, Fox Sch Business & Management, Dept Stat, Philadelphia, PA 19122 USAUniv Penn, Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
Xie, Jichun
Cai, T. Tony
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USAUniv Penn, Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
Cai, T. Tony
Maris, John
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Sch Med, Dept Pediat, Philadelphia, PA 19104 USAUniv Penn, Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
Maris, John
Li, Hongzhe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USAUniv Penn, Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
机构:
Tel Aviv Univ, Sackler Fac Exact Sci, Sch Math Sci, Dept Stat & Operat Res, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Sackler Fac Exact Sci, Sch Math Sci, Dept Stat & Operat Res, IL-69978 Tel Aviv, Israel
Yekutieli, D
Benjamini, Y
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Sackler Fac Exact Sci, Sch Math Sci, Dept Stat & Operat Res, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Sackler Fac Exact Sci, Sch Math Sci, Dept Stat & Operat Res, IL-69978 Tel Aviv, Israel
机构:
Penn State Univ, Dept Stat, University Pk, PA 16801 USAPenn State Univ, Dept Stat, University Pk, PA 16801 USA
Srinivasan, Arun
Xue, Lingzhou
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, University Pk, PA 16801 USAPenn State Univ, Dept Stat, University Pk, PA 16801 USA
Xue, Lingzhou
Zhan, Xiang
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Publ Hlth, Dept Biostat, Beijing, Peoples R China
Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R ChinaPenn State Univ, Dept Stat, University Pk, PA 16801 USA
机构:
Univ Southern Calif, Marshall Sch Business, Data Sci & Operat Dept, Los Angeles, CA 90089 USAUniv Southern Calif, Marshall Sch Business, Data Sci & Operat Dept, Los Angeles, CA 90089 USA
Javanmard, Adel
Montanari, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
Stanford Univ, Dept Stat, Stanford, CA 94305 USAUniv Southern Calif, Marshall Sch Business, Data Sci & Operat Dept, Los Angeles, CA 90089 USA
机构:
Penn State Univ, Dept Stat, University Pk, PA USAPenn State Univ, Dept Stat, University Pk, PA USA
Li, Runze
Mu, Jin
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Renmin Univ China, Inst Stat & Big Data, Beijing, Peoples R ChinaPenn State Univ, Dept Stat, University Pk, PA USA
Mu, Jin
Yang, Songshan
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Renmin Univ China, Inst Stat & Big Data, Beijing, Peoples R ChinaPenn State Univ, Dept Stat, University Pk, PA USA
Yang, Songshan
Ye, Cong
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Renmin Univ China, Inst Stat & Big Data, Beijing, Peoples R ChinaPenn State Univ, Dept Stat, University Pk, PA USA
Ye, Cong
Zhan, Xiang
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Beijing Int Ctr Math Res, Dept Biostat, Beijing, Peoples R China
Peking Univ, Ctr Stat Sci, Beijing, Peoples R ChinaPenn State Univ, Dept Stat, University Pk, PA USA