New monotonicity formulas and the optimal regularity in the Signorini problem with variable coefficients

被引:28
|
作者
Garofalo, Nicola [1 ]
Garcia, Mariana Smit Vega [2 ]
机构
[1] Univ Padua, Dipartimento Ingn Civile & Ambientale DICEA, I-35131 Padua, Italy
[2] Univ Dusseldorf, Dept Math, D-40225 Dusseldorf, Germany
关键词
Thin obstacle problem; Signorini problem; Optimal regularity; Free boundary problems; OBSTACLE PROBLEM; ELLIPTIC-OPERATORS; FREE-BOUNDARY; UNIQUE CONTINUATION;
D O I
10.1016/j.aim.2014.05.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the interior Signorini, or lower-dimensional obstacl problem for a uniformly elliptic divergence form operator L = div(A(x)del) with Lipschitz continuous coefficients. Our main result states that, similarly to what happens when L = Delta, the variational solution has the optimal interior regularity C-loc(1,1/2) (Omega(+/-) U M), when M is a codimension one fiat manifold which supports the obstacle. We achieve this by proving some new monotonicity formulas for an appropriate generalizatio of the celebrated Almgren's frequency functional. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:682 / 750
页数:69
相关论文
共 50 条