Approximation algorithms for geometric intersection graphs

被引:0
|
作者
Jansen, Klaus [1 ]
机构
[1] Univ Kiel, Inst Informat, Olshaussenstr 40, D-24098 Kiel, Germany
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we describe together with an overview about other results the main ideas of our polynomial time approximation schemes for the maximum weight independent set problem (selecting a set of disjoint disks in the plane of maximum total weight) in disk graphs and for the maximum bisection problem (finding a partition of the vertex set into twosubsets of equal cardinality with maximum number of edges between the subsets) in unit-disk graphs.
引用
收藏
页码:151 / +
页数:2
相关论文
共 50 条
  • [1] Approximation Algorithms for Intersection Graphs
    Frank Kammer
    Torsten Tholey
    [J]. Algorithmica, 2014, 68 : 312 - 336
  • [2] Approximation Algorithms for Intersection Graphs
    Kammer, Frank
    Tholey, Torsten
    [J]. ALGORITHMICA, 2014, 68 (02) : 312 - 336
  • [3] Approximation Algorithms for Intersection Graphs
    Kammer, Frank
    Tholey, Torsten
    Voepel, Heiko
    [J]. APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2010, 6302 : 260 - 273
  • [4] Powers of geometric intersection graphs and dispersion algorithms
    Agnarsson, G
    Damaschke, P
    Halldórsson, AMM
    [J]. ALGORITHM THEORY - SWAT 2002, 2002, 2368 : 140 - 149
  • [5] Powers of geometric dispersion intersection graphs and algorithms
    Agnarsson, G
    Damaschke, P
    Halldórsson, MM
    [J]. DISCRETE APPLIED MATHEMATICS, 2003, 132 (1-3) : 3 - 16
  • [6] Biobjective evolutionary and heuristic algorithms for intersection of geometric graphs
    Kumar, Rajeev
    Singh, Rk.
    Bhattacharya, Bhargab B.
    [J]. GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 1689 - 1696
  • [7] Polynomial-time approximation schemes for geometric intersection graphs
    Erlebach, T
    Jansen, K
    Seidel, E
    [J]. SIAM JOURNAL ON COMPUTING, 2005, 34 (06) : 1302 - 1323
  • [8] Better Diameter Algorithms for Bounded VC-Dimension Graphs and Geometric Intersection Graphs
    Duraj, Lech
    Konieczny, Filip
    Potępa, Krzysztof
    [J]. Leibniz International Proceedings in Informatics, LIPIcs, 308
  • [9] In-place algorithms for computing a largest clique in geometric intersection graphs
    De, Minati
    Nandy, Subhas C.
    Roy, Sasanka
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 178 : 58 - 70
  • [10] Domination in geometric intersection graphs
    Erlebach, Thomas
    van Leeuwen, Erik Jan
    [J]. LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 747 - +