Several observations on symplectic, Hamiltonian, and skew-Hamiltonian matrices

被引:11
|
作者
Fassbender, H
Ikramov, KD [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119899, Russia
[2] TU Braunschweig, Inst Computat Math, D-38023 Braunschweig, Germany
关键词
symplectic matrix; Hamiltonian matrix; skew-Hamiltonian matrix; conjugate symplectic matrix; J-Hermitian matrix; J-skew-Hermitian matrix; singular value decomposition; definite hermitian pair;
D O I
10.1016/j.laa.2004.12.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Hamiltonian/skew-Hamiltonian version of the classical theorem relating strict equivalence and T-congruence between pencils of complex symmetric or skew-symmetric matrices. Then, we give a pure symplectic variant of the recent result of Xu concerning the singular value decomposition of a conjugate symplectic matrix. Finally, we discuss implications that can be derived from Veselic's result on definite pairs of Hermitian matrices for the skew-Hamiltonian situation. (c) 2005 Published by Elsevier Inc.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 50 条