A method to handle mesh switches for non-linear structural analysis in explicit dynamics

被引:1
|
作者
Bourel, B. [2 ,3 ]
Combescure, A. [1 ]
机构
[1] Univ Lyon, INSA Lyon, CNRS, Lab Mecan Contacts & Struct,UMR 5259, F-69621 Villeurbanne, France
[2] Univ Lille Nord France, F-59000 Lille, France
[3] UVHC, Lab Automat Mecan & Informat Ind & Humaines, CNRS, FRE 3304, F-59313 Valenciennes, France
关键词
Non-linear dynamic; Explicit scheme; Multi-scale calculations; MULTI-TIME-STEP; TRANSIENT ANALYSIS; FINITE-ELEMENTS; REFINEMENT; SUBDOMAINS; ALGORITHMS; SCHEME;
D O I
10.1016/j.finel.2011.02.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes a method to change the space-time scales for multi-domain calculations in explicit dynamics. The interest of such a method, inspired by mesh refinement techniques, is to improve only when necessary the space (and time) discretisation of one or more sub-domains, during a significant phase of calculation. The fields transfer between the meshes and the reequilibrating of the solution after the mesh switch will be particularly developed. The criterion used to decide the switch mesh will be based on the maximum plastic strain. The proposed method will be illustrated with two examples in the non-linear case. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:812 / 824
页数:13
相关论文
共 50 条
  • [1] Multi-time-step explicit-implicit method for non-linear structural dynamics
    Gravouil, A
    Combescure, A
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 50 (01) : 199 - 225
  • [2] Combined implicit-explicit algorithms for non-linear structural dynamics
    Noels, Ludovic
    Stainier, Laurent
    Ponthot, Jean-Philippe
    Bonini, Jérôme
    [J]. Revue Europeenne des Elements, 2002, 11 (05): : 565 - 591
  • [3] A time and space mortar method for coupling linear modal subdomains and non-linear subdomains in explicit structural dynamics
    Faucher, V
    Combescure, A
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (5-6) : 509 - 533
  • [4] STABILITY ANALYSIS OF AN EXTRAPOLATED FORCE CORRECTION METHOD FOR NON-LINEAR STRUCTURAL DYNAMICS
    TRUJILLO, DM
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1982, 49 (01): : 203 - 205
  • [5] ALGORITHMS FOR NON-LINEAR STRUCTURAL DYNAMICS
    ADELI, H
    GERE, JM
    WEAVER, W
    [J]. JOURNAL OF THE STRUCTURAL DIVISION-ASCE, 1978, 104 (02): : 263 - 280
  • [6] A monomial-based method for non-linear structural analysis
    Burns, SA
    Mueller, KM
    [J]. ENGINEERING COMPUTATIONS, 1999, 16 (6-7) : 831 - 840
  • [7] Special Issue on Non-linear Structural Dynamics
    Imregun, M.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (01) : 5 - 7
  • [8] A non-linear explicit filter
    Genon-Catalot, V
    [J]. STATISTICS & PROBABILITY LETTERS, 2003, 61 (02) : 145 - 154
  • [9] Non-linear dynamics method for target identification
    Carroll, T. L.
    Rachford, F. J.
    [J]. IET RADAR SONAR AND NAVIGATION, 2011, 5 (07): : 741 - 746
  • [10] Stochastic Material Point Method for Analysis in Non-Linear Dynamics of Metals
    Chen, Weidong
    Shi, Yaqin
    Ma, Jingxin
    Xu, Chunlong
    Lu, Shengzhuo
    Xu, Xing
    [J]. METALS, 2019, 9 (01)