The geometric structure of unit dual quaternion with application in kinematic control

被引:64
|
作者
Wang, Xiangke [1 ,2 ]
Han, Dapeng [3 ]
Yu, Changbin [2 ]
Zheng, Zhiqiang [1 ]
机构
[1] Natl Univ Def Technol, Coll Mechatron & Automat, Changsha 410073, Hunan, Peoples R China
[2] Australian Natl Univ, Res Sch Engn, Canberra, ACT 0200, Australia
[3] Natl Univ Def Technol, Coll Aerosp & Mat Engn, Changsha 410073, Hunan, Peoples R China
关键词
Lie-group structure; Unit dual quaternion; Logarithmic mapping; Kinematic control; ATTITUDE-CONTROL PROBLEM; MOTIONS; DESIGN;
D O I
10.1016/j.jmaa.2012.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the geometric structure, especially the Lie-group related properties, of unit dual quaternion is investigated. The exponential form of unit dual quaternion and its approximate logarithmic mapping are derived. Correspondingly, Lie-group and Lie-algebra on unit dual quaternions and the approximate logarithms are explored, respectively. Afterwards, error and metric based on unit dual quaternion are given, which naturally result in a new kinematic control model with unit dual quaternion descriptors. Finally, as a case study, a generalized proportional control law using unit dual quaternion is developed. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1352 / 1364
页数:13
相关论文
共 50 条
  • [1] Kinematic modeling of an anthropomorphic hand using unit dual quaternion
    Chandra, Rohit
    Corrales-Ramon, Juan Antonio
    Mezouar, Youcef
    [J]. 2019 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2019, : 433 - 437
  • [2] Dual Quaternion Based Kinematic Control for Yumi Dual Arm Robot
    Liang, Jimin
    Zhang, Gong
    Wang, Weijun
    Hou, Zhicheng
    Li, Jun
    Wang, Xiying
    Han, Chang-Soo
    [J]. 2017 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2017, : 114 - 118
  • [3] Efficient Kinematic Calibration for Parallel Manipulators Based on Unit Dual Quaternion
    Luo, Jingbo
    Chen, Silu
    Jiang, Dexin
    Zheng, Tianjiang
    Li, Huamin
    Fang, Zaojun
    Zhang, Chi
    Yang, Guilin
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (04) : 6791 - 6801
  • [4] Efficient Kinematic Calibration for Articulated Robot Based on Unit Dual Quaternion
    Luo, Jingbo
    Chen, Silu
    Zhang, Chi
    Chen, Chin-Yin
    Yang, Guilin
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (12) : 11898 - 11909
  • [5] Dual quaternion application to kinematic calibration of wrist-mounted camera
    Kim, DM
    [J]. JOURNAL OF ROBOTIC SYSTEMS, 1996, 13 (03): : 153 - 162
  • [6] Dual-Quaternion-Based Variable Structure Control: A New Approach and Application
    Zhang, Hui
    Wang, Xiangke
    Han, Dapeng
    [J]. INTELLIGENT ROBOTICS AND APPLICATIONS, PT II, 2010, 6425 : 75 - 86
  • [7] Robust kinematic control of manipulator robots using dual quaternion representation
    Figueredo, L. F. C.
    Adorno, B. V.
    Ishihara, J. Y.
    Borges, G. A.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 1949 - 1955
  • [8] Robust H∞ kinematic control of manipulator robots using dual quaternion algebra
    Figueredo, Luis Felipe da Cruz
    Adorno, Bruno Vilhena
    Ishihara, Joao Yoshiyuki
    [J]. AUTOMATICA, 2021, 132
  • [9] Quantum Space Structure by Geometric Algebra Including the Hurwitz Unit Quaternion Group
    Andresen, Jens Erfurt
    [J]. ADVANCED COMPUTATIONAL APPLICATIONS OF GEOMETRIC ALGEBRA, ICACGA 2022, 2024, 13771 : 228 - 228
  • [10] Relative position and attitude coordinated control based on unit dual quaternion
    Li, Jing
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2018, 10 (12):