Intrinsic-strain-induced curling of free-standing two-dimensional Janus MoSSe quantum dots

被引:12
|
作者
Ye, Han [1 ,2 ]
Zhang, Yunzhen [1 ]
Wei, Anran [3 ]
Han, Delong [1 ]
Liu, Yumin [1 ]
Liu, Wenjun [1 ]
Yin, Yuefeng [2 ]
Wang, Mingchao [2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[3] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Dept Engn Mech, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Janus transition metal dichalcogenides; Quantum dot; Intrinsic strain; Molecular dynamics; Finite element method; TRANSITION-METAL DICHALCOGENIDES; HYDROGEN EVOLUTION REACTION; MONOLAYER; NANOPARTICLES; DYNAMICS; SITES;
D O I
10.1016/j.apsusc.2020.146251
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Motivated by the fascinating properties of both two-dimensional transition metal dichalcogenide quantum dots (TMD QDs) and Janus TMD monolayers, we theoretically explore the equilibrium structures of free-standing Janus MoSSe QDs in which atomic asymmetry of chalcogen is introduced. Two distinct types of spontaneous curling are observed by molecular dynamics simulations, and the curling behavior depends on the size of QD. The bowl-like (tube-like) curling occurs in relatively small (large) MoSSe QDs with different shapes (hexagon and triangle) and edge types (zigzag and armchair). The transition between these two curling types occurs at the sizes of around 10 nm and 13 nm for hexagonal and triangular shapes, respectively. By applying equivalent misfit strains into two adjacent sublayers, finite element analysis reproduces similar curling behavior. This confirms the relaxation of intrinsic strain in Janus structure acting as the predominant driving force of spontaneous curling. In addition, the curvatures of Janus TMD QDs increase from MoSSe to MoSeTe to MoSTe, indicating the positive correlation between the curling and misfit.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Two-Dimensional Quantum Transport in Free-Standing InSb Nanosheets
    Kang, Ning
    Fan, Dingxun
    Zhi, Jinhua
    Pan, Dong
    Li, Sen
    Wang, Cheng
    Guo, Jingkun
    Zhao, Jianhua
    Xu, Hongqi
    [J]. NANO LETTERS, 2019, 19 (01) : 561 - 569
  • [2] Free-standing two-dimensional Au films
    Shi-Zhuang Gao
    Mu Yang
    Qing-Yun Xiang
    Yu Wang
    Huan Zhang
    Yang Bai
    Wen-Qing Yao
    Jiang-Li Cao
    [J]. Rare Metals, 2022, 41 (12) : 4235 - 4240
  • [3] Free-standing two-dimensional Au films
    Gao, Shi-Zhuang
    Yang, Mu
    Xiang, Qing-Yun
    Wang, Yu
    Zhang, Huan
    Bai, Yang
    Yao, Wen-Qing
    Cao, Jiang-Li
    [J]. RARE METALS, 2022, 41 (12) : 4235 - 4240
  • [4] Free-standing two-dimensional Au films
    Shi-Zhuang Gao
    Mu Yang
    Qing-Yun Xiang
    Yu Wang
    Huan Zhang
    Yang Bai
    Wen-Qing Yao
    Jiang-Li Cao
    [J]. Rare Metals, 2022, 41 : 4235 - 4240
  • [5] Strain-induced intrinsic antiferromagnetic skyrmions in two-dimensional Janus magnets
    Pan, Weiyi
    Ji, Shilei
    Xu, Zhiming
    [J]. Physical Review B, 110 (14):
  • [6] Properties of the Free-Standing Two-Dimensional Copper Monolayer
    Yang, Li-Ming
    Frauenheim, Thomas
    Ganz, Eric
    [J]. JOURNAL OF NANOMATERIALS, 2016, 2016
  • [7] Fabrication and Properties of a Free-Standing Two-Dimensional Titania
    Wang, Song Ling
    Luo, Xin
    Zhou, Xiong
    Zhu, Ye
    Chi, Xiao
    Chen, Wei
    Wu, Kai
    Liu, Zheng
    Quek, Su Ying
    Xu, Guo Qin
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (43) : 15414 - 15419
  • [8] Free-standing Monatomic Thick Two-dimensional Gold
    Wang, Xuelu
    Wang, Chunyang
    Chen, Chunjin
    Duan, Huichao
    Du, Kui
    [J]. NANO LETTERS, 2019, 19 (07) : 4560 - 4566
  • [9] Preparation of free-standing two-dimensional colloidal crystal arrays
    Xue, Fei
    Meng, Zihui
    Qi, Fenglian
    Xue, Min
    Qiu, Lili
    [J]. COLLOID AND POLYMER SCIENCE, 2016, 294 (02) : 479 - 482
  • [10] Preparation of free-standing two-dimensional colloidal crystal arrays
    Fei Xue
    Zihui Meng
    Fenglian Qi
    Min Xue
    Lili Qiu
    [J]. Colloid and Polymer Science, 2016, 294 : 479 - 482