Bayesian Inverse Transient Analysis for Pipeline Condition Assessment: Parameter Estimation and Uncertainty Quantification

被引:10
|
作者
Zhang, Chi [1 ]
Lambert, Martin F. [1 ]
Gong, Jinzhe [1 ,2 ]
Zecchin, Aaron C. [1 ]
Simpson, Angus R. [1 ]
Stephens, Mark L. [3 ]
机构
[1] Univ Adelaide, Sch Civil & Environm Engn, Adelaide, SA 5005, Australia
[2] Deakin Univ, Waurn Ponds Campus, Geelong, Vic 3216, Australia
[3] SA Water, Asset Management Dept, Adelaide, SA 5000, Australia
基金
澳大利亚研究理事会;
关键词
Markov chain Monte Carlo; Hydraulic transient; Inverse transient analysis; Uncertainty assessment; Pipeline condition assessment; MONTE-CARLO-SIMULATION; LEAK DETECTION; EXPERIMENTAL-VERIFICATION; DIFFERENTIAL EVOLUTION; WATER; CALIBRATION;
D O I
10.1007/s11269-020-02582-9
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Strategic pipeline asset management requires accurate and up-to-date information on pipeline condition. As a tool for pipeline condition assessment, inverse transient analysis (ITA - a pipeline model calibration approach) is typically formulated as a deterministic problem, and optimization methods are used for searching a single best solution. The uncertainty associated with the single best solution is rarely assessed. In this paper, the pipeline model calibration problem is formulated as a Bayesian inverse problem, and a Markov Chain Monte Carlo (MCMC) based method is used to construct the estimated posterior probability density function (PDF) of the calibration parameters. The MCMC based method is able to achieve parameter estimation and uncertainty assessment in a single run, which is confirmed by numerical experiments. The proposed technique is also validated using measured hydraulic transient response data from an experimental laboratory pipeline system. Two thinner-walled pipe sections (simulating extended deterioration) are successfully identified with an assessment of the parameter uncertainty. The results also suggest that proper sensor placement can reduce parameter uncertainty and significantly enhance system identifiability.
引用
收藏
页码:2807 / 2820
页数:14
相关论文
共 50 条
  • [1] Bayesian Inverse Transient Analysis for Pipeline Condition Assessment: Parameter Estimation and Uncertainty Quantification
    Chi Zhang
    Martin F. Lambert
    Jinzhe Gong
    Aaron C. Zecchin
    Angus R. Simpson
    Mark L. Stephens
    [J]. Water Resources Management, 2020, 34 : 2807 - 2820
  • [2] Multi-stage parameter-constraining inverse transient analysis for pipeline condition assessment
    Zhang, Chi
    Zecchin, Aaron C.
    Lambert, Martin F.
    Gong, Jinzhe
    Simpson, Angus R.
    [J]. JOURNAL OF HYDROINFORMATICS, 2018, 20 (02) : 281 - 300
  • [3] Sensor Placement Strategy for Pipeline Condition Assessment Using Inverse Transient Analysis
    Chi Zhang
    Jinzhe Gong
    Martin F. Lambert
    Angus R. Simpson
    Aaron C. Zecchin
    [J]. Water Resources Management, 2019, 33 : 2761 - 2774
  • [4] Sensor Placement Strategy for Pipeline Condition Assessment Using Inverse Transient Analysis
    Zhang, Chi
    Gong, Jinzhe
    Lambert, Martin F.
    Simpson, Angus R.
    Zecchin, Aaron C.
    [J]. WATER RESOURCES MANAGEMENT, 2019, 33 (08) : 2761 - 2774
  • [5] Bayesian inference for thermal response test parameter estimation and uncertainty assessment
    Choi, Wonjun
    Kikumoto, Hideki
    Choudhary, Ruchi
    Ooka, Ryozo
    [J]. APPLIED ENERGY, 2018, 209 : 306 - 321
  • [6] Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis
    Gouveia, WP
    Scales, JA
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1998, 103 (B2) : 2759 - 2779
  • [7] PARAMETER UNCERTAINTY IN ESTIMATION OF SPATIAL FUNCTIONS - BAYESIAN-ANALYSIS
    KITANIDIS, PK
    [J]. WATER RESOURCES RESEARCH, 1986, 22 (04) : 499 - 507
  • [8] Inverse Wave Reflectometry Method for Hydraulic Transient-Based Pipeline Condition Assessment
    Zeng, Wei
    Zecchin, Aaron C.
    Gong, Jinzhe
    Lambert, Martin F.
    Simpson, Angus R.
    Cazzolato, Benjamin S.
    [J]. JOURNAL OF HYDRAULIC ENGINEERING, 2020, 146 (08)
  • [9] Uncertainty Quantification for parameter estimation of an industrial electric motor using hierarchical Bayesian inversion
    Rehme, Michael F.
    John, David N.
    Schick, Michael
    Pflueger, Dirk
    [J]. MECHATRONICS, 2023, 92
  • [10] Fast computation of inverse transient analysis for pipeline condition assessment via surrogate modeling with sparse sampling strategy
    Wang, Xun
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 162