Implicit solutions to constrained nonlinear output regulation using MPC

被引:0
|
作者
Koehler, Johannes [1 ]
Mueller, Matthias A. [2 ]
Allgoewer, Frank [1 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70550 Stuttgart, Germany
[2] Leibniz Univ Hannover, Inst Automat Control, D-30167 Hannover, Germany
关键词
MODEL-PREDICTIVE CONTROL; TO-STATE STABILITY; REFERENCE TRACKING; DISSIPATIVITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we show that a simple model predictive control (MPC) scheme can solve the constrained nonlinear output regulation problem without explicitly solving the classical regulator (Francis-Byrnes-Isidori) equations. We first study the general problem of stabilizing a set with MPC using a positive semidefinite (input/output) cost function under suitable stabilizability and detectability assumptions, similar to Grimm et al. (2005) [1]. We show that in the output regulation setting, these conditions hold, if the nonlinear constrained regulation problem is (strictly) feasible, the plant is detectable (i-IOSS) and the control input can be uniquely reconstructed from the plant/reference output. Given these structural assumptions, by simply penalizing the predicted output error in the MPC stage cost, the closed loop implicitly stabilizes a state trajectory that solves the regulator equations, if a sufficiently large prediction horizon is used.
引用
收藏
页码:4604 / 4609
页数:6
相关论文
共 50 条
  • [1] Constrained Nonlinear Output Regulation Using Model Predictive Control
    Koehler, Johannes
    Mueller, Matthias A.
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (05) : 2419 - 2434
  • [2] Learning-based Funnel-MPC for output-constrained nonlinear systems
    Berger, Thomas
    Kaestner, Carolin
    Worthmann, Karl
    IFAC PAPERSONLINE, 2020, 53 (02): : 5177 - 5182
  • [3] MPC for tracking of constrained nonlinear systems
    Ferramosca, A.
    Limon, D.
    Alvarado, I.
    Alamo, T.
    Camacho, E. F.
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 7978 - 7983
  • [4] MPC for Tracking of Constrained Nonlinear Systems
    Limon, D.
    Ferramosca, A.
    Alvarado, I.
    Alamo, T.
    Camacho, E. F.
    NONLINEAR MODEL PREDICTIVE CONTROL: TOWARDS NEW CHALLENGING APPLICATIONS, 2009, 384 : 315 - 323
  • [5] Personalized Constrained MPC for glucose regulation
    Toffanin, Chiara
    Magni, Lalo
    IFAC PAPERSONLINE, 2023, 56 (02): : 9648 - 9653
  • [6] Constrained nonlinear MPC using Hammerstein and Wiener models: PLS framework
    Patwardhan, RS
    Lakshminarayanan, S
    Shah, SL
    AICHE JOURNAL, 1998, 44 (07) : 1611 - 1622
  • [7] Piecewise smooth solutions to the nonlinear output regulation PDE
    Aguilar, Cesar O.
    Krener, Arthur J.
    2011 AMERICAN CONTROL CONFERENCE, 2011,
  • [8] Output feedback regulation for a class of output-constrained nonlinear systems with iISS inverse dynamics
    Yang, Jing
    Zhang, Jie
    Zhang, Zhongcai
    Wu, Yuqiang
    IET CONTROL THEORY AND APPLICATIONS, 2022, 16 (10): : 985 - 994
  • [9] Combined control and communication scheduling for constrained system using robust output feedback MPC
    Kogel, Markus
    Quevedo, Daniel
    Findeisen, Rolf
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 1778 - 1783
  • [10] A comparative study on output feedback MPC for constrained LPV systems
    Ding Baocang
    Xi Yugeng
    Ping Xubin
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 4189 - 4194