Demonstration of a conjecture for random walks in d-dimensional Sierpinski fractals

被引:3
|
作者
Porra, JM
Yuste, SB
机构
[1] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain
[2] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
来源
关键词
D O I
10.1088/0305-4470/31/31/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Random walks on some fractals can be analysed by renormalization procedures. These techniques make it possible to obtain the Laplace transform of the first-passage time probability density function of a random walker that moves in the fractal. The calculation depends on a function rho(x) that is particular to each kind of fractal. For the Sierpinski family of fractals, it has been conjectured that rho(x) = 2dx(2) - 3(d - 1)x + d - 2, where d is the dimension of the Euclidean space in which the Sierpinski fractal is embedded. We provide a proof of the conjecture that is based on the symmetries of the Sierpinski fractal.
引用
收藏
页码:6589 / 6593
页数:5
相关论文
共 50 条