Hollow Gaussian Schell-model beam and its propagation

被引:12
|
作者
Wang, Li-Gang [1 ,2 ]
Wang, Li-Qin [1 ]
机构
[1] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China
[2] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
partially coherent beams; Schell-model sources; dark hollow beams; propagation;
D O I
10.1016/j.optcom.2007.11.018
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we present a new model, hollow Gaussian Schell-model beams (HGSMBs), to describe the practical dark hollow beams. An analytical propagation formula for HGSMBs passing through a paraxial first-order optical system is derived based on the theory of coherence. Based on the derived formula, an application example showing the influence of spatial coherence on the propagation of beams is illustrated. It is found that the beam propagating properties of HGSMBs will be greatly affected by their spatial coherence. Our model provides a very convenient way for analyzing the propagation properties of partially coherent dark hollow beams. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1337 / 1342
页数:6
相关论文
共 50 条
  • [1] Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam
    Zhu, Shijun
    Cai, Yangjian
    Korotkova, Olga
    [J]. OPTICS EXPRESS, 2010, 18 (12): : 12587 - 12598
  • [2] Generation and propagation of an electromagnetic Gaussian Schell-model vortex beam
    Liu, Xianlong
    Wang, Fei
    Liu, Lin
    Zhao, Chengliang
    Cai, Yangjian
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (11) : 2058 - 2065
  • [3] Generation and Propagation of a Stochastic Electromagnetic Gaussian Schell-model Beam
    Chen, Yahong
    Wang, Fei
    Cal, Yangjian
    [J]. PROCEEDINGS OF PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2012), 2012, : 1294 - 1298
  • [4] Nonparaxial propagation of a multi-Gaussian Schell-model beam
    Huang, Kelin
    Wang, Xun
    Liu, Zhirong
    [J]. JOURNAL OF OPTICS, 2015, 17 (08)
  • [5] Propagation of the COAM matrix of a twisted Gaussian Schell-model beam
    Pokharel, Sushil
    Korotkova, Olga
    [J]. OPTICS COMMUNICATIONS, 2024, 563
  • [6] Effect of polarization on the evolution of electromagnetic hollow Gaussian Schell-model beam
    Long, Xuewen
    Lu, Keqing
    Zhang, Yuhong
    Guo, Jianbang
    Li, Kehao
    [J]. OPTICS COMMUNICATIONS, 2011, 284 (03) : 715 - 718
  • [7] Nonparaxial propagation of a rectangular multi-Gaussian Schell-model beam
    Huang, Kelin
    Wang, Xun
    Liu, Zhirong
    [J]. OPTICS COMMUNICATIONS, 2015, 356 : 25 - 33
  • [8] PROPAGATION PARAMETERS OF GAUSSIAN SCHELL-MODEL BEAMS
    FRIBERG, AT
    SUDOL, RJ
    [J]. OPTICS COMMUNICATIONS, 1982, 41 (06) : 383 - 387
  • [9] Degree of paraxiality of an anisotropic hollow multi-Gaussian Schell-model beam
    Huang, Ju
    Wang, Ziyuan
    Ji, Xiaoling
    Wang, Tao
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2020, 37 (11) : 1778 - 1784
  • [10] Propagation of a twisted anisotropic Gaussian Schell-model beam beyond the paraxial approximation
    Zhang, L.
    Cai, Y.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 103 (04): : 1001 - 1008