共 50 条
The global existence and asymptotic stability of solutions for a reaction-diffusion system
被引:3
|作者:
Bendoukha, Samir
[1
]
Abdelmalek, Salem
[2
]
Kirane, Mokhtar
[3
,4
,5
]
机构:
[1] Taibah Univ, Dept Elect Engn, Coll Engn, Yanbu, Saudi Arabia
[2] Univ Tebessa, Dept Math, Tebessa 12002, Algeria
[3] Univ La Rochelle, Pole Sci & Technol, Fac Sci, LaSIE, Ave M Crepeau, F-17042 La Rochelle, France
[4] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[5] RUDN Univ, Peoples Friendship Univ Russia, 6 Miklukho Maklay St, Moscow 117198, Russia
关键词:
Reaction-diffusion equations;
Lengyel-Epstein system;
FitzHugh-Nagumo model;
Global asymptotic stability;
Lyapunov functional;
LENGYEL-EPSTEIN SYSTEM;
TURING PATTERNS;
INSTABILITY;
BIFURCATION;
DYNAMICS;
D O I:
10.1016/j.nonrwa.2019.103052
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper studies the solutions of a reaction-diffusion system with nonlinearities that generalize the Lengyel-Epstein and FitzHugh-Nagumo nonlinearities. Sufficient conditions are derived for the global asymptotic stability of the solutions. Furthermore, we present some numerical examples. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页数:17
相关论文