The global existence and asymptotic stability of solutions for a reaction-diffusion system

被引:3
|
作者
Bendoukha, Samir [1 ]
Abdelmalek, Salem [2 ]
Kirane, Mokhtar [3 ,4 ,5 ]
机构
[1] Taibah Univ, Dept Elect Engn, Coll Engn, Yanbu, Saudi Arabia
[2] Univ Tebessa, Dept Math, Tebessa 12002, Algeria
[3] Univ La Rochelle, Pole Sci & Technol, Fac Sci, LaSIE, Ave M Crepeau, F-17042 La Rochelle, France
[4] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[5] RUDN Univ, Peoples Friendship Univ Russia, 6 Miklukho Maklay St, Moscow 117198, Russia
关键词
Reaction-diffusion equations; Lengyel-Epstein system; FitzHugh-Nagumo model; Global asymptotic stability; Lyapunov functional; LENGYEL-EPSTEIN SYSTEM; TURING PATTERNS; INSTABILITY; BIFURCATION; DYNAMICS;
D O I
10.1016/j.nonrwa.2019.103052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the solutions of a reaction-diffusion system with nonlinearities that generalize the Lengyel-Epstein and FitzHugh-Nagumo nonlinearities. Sufficient conditions are derived for the global asymptotic stability of the solutions. Furthermore, we present some numerical examples. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页数:17
相关论文
共 50 条