Ultra-high-energy cosmic rays and neutrinos from tidal disruptions by massive black holes

被引:56
|
作者
Guepin, Claire [1 ,2 ]
Kotera, Kumiko [1 ,2 ,3 ]
Barausse, Enrico [1 ,2 ]
Fang, Ke [4 ,5 ]
Murase, Kohta [6 ,7 ,8 ,9 ]
机构
[1] UPMC Univ Paris 6, Sorbonne Univ, 98 Bis Bd Arago, F-75014 Paris, France
[2] CNRS, UMR 7095, Inst Astrophys Paris, 98 Bis Bd Arago, F-75014 Paris, France
[3] Univ Paris Diderot, CNRS, CEA DSM IRFU, Lab AIM Paris Saclay, F-91191 Gif Sur Yvette, France
[4] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
[5] Joint Space Sci Inst, College Pk, MD 20742 USA
[6] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[7] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA
[8] Penn State Univ, Ctr Particle & Gravitat Astrophys, University Pk, PA 16802 USA
[9] Yukawa Inst Theoret Phys, Kyoto, Kyoto 6068502, Japan
基金
欧盟地平线“2020”;
关键词
astroparticle physics; neutrinos; POST-NEWTONIAN EVOLUTION; GALACTIC NUCLEI; LUMINOSITY FUNCTION; STELLAR DISRUPTION; GALAXY BIMODALITY; POPULATION; TRIPLETS; CLUSTERS; GROWTH; LIMIT;
D O I
10.1051/0004-6361/201732392
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Tidal disruptions are extremely powerful phenomena that have been designated as candidate sources of ultra-high-energy cosmic rays. The disruption of a star by a black hole can naturally provide protons and heavier nuclei, which can be injected and accelerated to ultra-high energies within a jet. Inside the jet, accelerated nuclei are likely to interact with a dense photon field, leading to a significant production of neutrinos and secondary particles. We model numerically the propagation and interactions of high-energy nuclei in jetted tidal disruption events in order to evaluate consistently their signatures in cosmic rays and neutrinos. We propose a simple model of the light curve of tidal disruption events, consisting of two stages: a high state with bright luminosity and short duration and a medium state, less bright and longer lasting. These two states have different impacts on the production of cosmic rays and neutrinos. In order to calculate the diffuse fluxes of cosmic rays and neutrinos, we model the luminosity function and redshift evolution of jetted tidal disruption events. We find that we can fit the latest ultra-high-energy cosmic-ray spectrum and composition results of the Auger experiment for a range of reasonable parameters. The diffuse neutrino flux associated with this scenario is found to be subdominant, but nearby events can be detected by IceCube or next-generation detectors such as IceCube-Gen2.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Ultra-high-energy cosmic rays and neutrinos from tidal disruptions by massive black holes (vol 616, A179, 2018)
    Guepin, Claire
    Kotera, Kumiko
    Barausse, Enrico
    Fang, Ke
    Murase, Kohta
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 636
  • [2] Neutrinos from active black holes, sources of ultra high energy cosmic rays
    Becker, Julia K.
    Biermann, Peter L.
    [J]. ASTROPARTICLE PHYSICS, 2009, 31 (02) : 138 - 148
  • [3] Neutrinos, ultra-high-energy cosmic rays and fundamental physics
    Ellis, J
    [J]. OBSERVING ULTRAHIGH ENERGY COSMIC RAYS FROM SPACE AND EARTH, 2001, 566 : 211 - 237
  • [4] Search for Spatial Correlations of Neutrinos with Ultra-high-energy Cosmic Rays
    Albert, A.
    Alves, S.
    Andre, M.
    Anghinolfi, M.
    Ardid, S.
    Aubert, J-J
    Aublin, J.
    Baret, B.
    Basa, S.
    Belhorma, B.
    Bendahman, M.
    Bertin, V
    Biagi, S.
    Bissinger, M.
    Boumaaza, J.
    Bouta, M.
    Bouwhuis, M. C.
    Branzas, H.
    Bruijn, R.
    Brunner, J.
    Busto, J.
    Caiffi, B.
    Calvo, D.
    Capone, A.
    Caramete, L.
    Carr, J.
    Carretero, V
    Celli, S.
    Chabab, M.
    Chau, T. N.
    El Moursli, R. Cherkaoui
    Chiarusi, T.
    Circella, M.
    Coleiro, A.
    Coniglione, R.
    Coyle, P.
    Creusot, A.
    Diaz, A. F.
    Distefano, C.
    Di Palma, I
    Domi, A.
    Donzaud, C.
    Dornic, D.
    Drouhin, D.
    Eberl, T.
    van Eeden, T.
    van Eijk, D.
    El Khayati, N.
    Enzenhofer, A.
    Fermani, P.
    [J]. ASTROPHYSICAL JOURNAL, 2022, 934 (02):
  • [5] Consraints on the origin of ultra-high-energy cosmic rays from cosniogeriic photons and neutrinos
    Decerprit, Guillaume
    [J]. ASTROPARTICLE, PARTICLE, SPACE PHYSICS AND DETECTORS FOR PHYSICS APPLICATIONS, 2012, 7 : 46 - 50
  • [6] Constraints on the origin of ultra-high-energy cosmic rays from cosmogenic neutrinos and photons
    Decerprit, G.
    Allard, D.
    [J]. ASTRONOMY & ASTROPHYSICS, 2011, 535
  • [7] Search for correlations of high-energy neutrinos and ultra-high-energy cosmic rays
    Schumacher, Lisa
    [J]. VERY LARGE VOLUME NEUTRINO TELESCOPES (VLVNT-2018), 2019, 207
  • [8] Ultra-high-energy cosmic rays
    Anchordoqui, Luis A.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2019, 801 : 1 - 93
  • [9] Ultra-high-energy cosmic rays
    Westerhoff, Stefan
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (8-9): : 1950 - 1960
  • [10] Radio-wave detection of ultra-high-energy neutrinos and cosmic rays
    Huege, Tim
    Besson, Dave
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2017, 2017 (12):