A determinantal approach to Sheffer-Appell polynomials via monomiality principle

被引:24
|
作者
Khan, Subuhi [1 ]
Riyasat, Mumtaz [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
关键词
Sheffer-Appell polynomials; Determinantal approach; Monomiality principle; Sheffer-Bernoulli polynomials; Sheffer-Euler polynomials; APOSTOL-EULER POLYNOMIALS;
D O I
10.1016/j.jmaa.2014.07.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the Sheffer and Appell polynomials are combined to introduce the family of Sheffer-Appell polynomials by using operational methods. The determinantal definition and other properties of the Sheffer-Appell polynomials are established. As particular cases of these polynomials, the Sheffer-Bernoulli and Sheffer-Euler polynomials are introduced and their determinantal definitions are obtained. The operational correspondence between the Appall and Sheffer-Appell polynomials is used to derive the results for the Sheffer-Appell polynomials. Certain results for the Hermite-Appell and Laguerre-Appell polynomials are also obtained. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:806 / 829
页数:24
相关论文
共 50 条
  • [1] Approximation by Operators for the Sheffer-Appell Polynomials
    Jeelani, Mdi Begum
    Alnahdi, Abeer S.
    [J]. SYMMETRY-BASEL, 2022, 14 (12):
  • [2] A linear algebra approach to the hybrid Sheffer-Appell polynomials
    Khan, Subuhi
    Ali, Mahvish
    [J]. MATHEMATICAL SCIENCES, 2019, 13 (02) : 153 - 164
  • [3] Certain Identities Involving Sheffer-Appell Polynomials
    Khan, Subuhi
    Ali, Mahvish
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2020, 44 (02) : 245 - 254
  • [4] Sheffer polynomials, monomiality principle, algebraic methods and the theory of classical polynomials
    Dattoli, G.
    Migliorati, M.
    Srivastava, H. M.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (9-10) : 1033 - 1041
  • [5] A determinantal approach to Appell polynomials
    Costabile, F. A.
    Longo, E.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (05) : 1528 - 1542
  • [6] Some New Identities Involving Sheffer-Appell Polynomial Sequences via Matrix Approach
    Marcellan, Francisco
    Shadab, Mohd
    Jabee, Saima
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (05)
  • [7] General-Appell Polynomials within the Context of Monomiality Principle
    Khan, Subuhi
    Raza, Nusrat
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS, 2013,
  • [8] Monomiality principle, operational methods and family of Laguerre-Sheffer polynomials
    Khan, Subuhi
    Raza, Nusrat
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (01) : 90 - 102
  • [9] Determinantal Approach to Hermite-Sheffer Polynomials
    Khan, Subuhi
    Riyasat, Mumtaz
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 2, 2016, 380 : 525 - 534
  • [10] Monomiality principle, Sheffer-type polynomials and the normal ordering problem
    Penson, K. A.
    Blasiak, P.
    Dattoli, G.
    Duchamp, G. H. E.
    Horzela, A.
    Solomon, A. I.
    [J]. SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER (SSPCM 2005): PROCEEDINGS OF THE 8TH INTERNATIONAL SCHOOL ON THEORETICAL PHYSICS, 2006, 30 : 86 - +