Device-Circuit Co-Optimization for Negative Capacitance FinFETs based on SPICE Model

被引:0
|
作者
Huo, Jiali [1 ]
Huang, Weixing [1 ]
Zhang, Fan [1 ]
Huo, Qiang [1 ]
Gan, Weizhuo [1 ]
Xu, Haoqing [1 ]
Zhu, Huilong [1 ]
Yin, Huaxiang [1 ]
Wu, Zhenhua [1 ]
机构
[1] Chinese Acad Sci, Inst Microelect, Integrated Circuit Adv Proc R&D Ctr IMECAS, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
NC-FinFETs; BSIM-CMG; LK Equation; SPICE Model; Inverter; Ring Oscillator; TRANSISTORS; MFMIS; MFIS;
D O I
10.1109/iwaps51164.2020.9286809
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article presents a device-circuit co-optimization on Negative Capacitance FinFETs (NC-FinFETs). A physics-based SPICE model that combines industry-standard BSIM-CMG model and Landau Khalatnikov (LK) equation is developed for the NC-FinFETs. Different ferroelectric areas (A(FE)) are selected to analyze the characteristics of the NC-FinFETs. The influences of work function (WF) and capacitance matching on NC-FinFETs are investigated to further optimize the DC performance of inverters. Based on the NC-FinFETs SPICE model, we simulate the transient characteristics of the ring oscillator (RO) and analyze the delay-energy characteristics of the RO in detail. At low supply voltage (V-DD), the delay of NC-FinFETs-based RO is much smaller than that of conventional FinFETs-based RO. Under the same delay, the energy consumption of NC-FinFETs-based RO is 50.4% lower than that of FinFETs-based RO. This result shows that NC-FinFETs have great advantages in low-power applications.
引用
收藏
页码:67 / 70
页数:4
相关论文
共 50 条
  • [1] Investigation of device-circuit for negative capacitance vertical nanowire FETs based on SPICE model
    Huang, Weixing
    Zhu, Huilong
    Jia, Kunpeng
    Wu, Zhenhua
    Yin, Xiaogen
    Huo, Qiang
    Zhang, Yongkui
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2020, 35 (08)
  • [2] Device-Circuit Co-Optimization for Robust Design of FinFET-Based SRAMs
    Gupta, Sumeet Kumar
    Roy, Kaushik
    [J]. IEEE DESIGN & TEST, 2013, 30 (06) : 29 - 39
  • [3] Device-circuit co-optimization for mixed-mode circuit design via geometric programming
    Kim, Jintae
    Jhaveri, Ritesh
    Woo, Jason
    Yang, Chih-Kong Ken
    [J]. IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2007, : 470 - 475
  • [4] Fast and Energy-Efficient CNFET Adders With CDM and Sensitivity-Based Device-Circuit Co-Optimization
    Haghshenas, Kawsar
    Hashemi, Mona
    Nikoubin, Tooraj
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2018, 17 (04) : 783 - 794
  • [5] On the Critical Role of Ferroelectric Thickness for Negative Capacitance Device-Circuit Interaction
    Prakash, Om
    Gupta, Aniket
    Pahwa, Girish
    Chauhan, Yogesh S.
    Amrouch, Hussam
    [J]. IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2021, 9 : 1262 - 1268
  • [6] Exploring the impact of domain numbers on negative capacitance effects in ferroelectric Device-Circuit Co-Design
    Singh, Khoirom Johnson
    Acharya, Lomash Chandra
    Bulusu, Anand
    Dasgupta, Sudeb
    [J]. SOLID-STATE ELECTRONICS, 2023, 210
  • [7] Negative capacitance based phase-transition FET for low power applications: Device-circuit co-design
    Yadav, Sameer
    Kondekar, P. N.
    Upadhyay, Pranshoo
    Awadhiya, Bhaskar
    [J]. MICROELECTRONICS JOURNAL, 2022, 123
  • [8] Gate-All-Around FET Based 6T SRAM Design Using a Device-Circuit Co-Optimization Framework
    Wang, Luhao
    Shafaei, Alireza
    Pedram, Massoud
    [J]. 2017 IEEE 60TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2017, : 1113 - 1116
  • [9] Performance Projection of Negative Capacitance Complementary FET (NC-CFET): Device-Circuit Co-design
    Kumar, Abhishek
    Bulusu, Anand
    Dasgupta, Avirup
    [J]. 8TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM 2024, 2024, : 370 - 372
  • [10] Impact of Self-Heating on Negative-Capacitance FinFET: Device-Circuit Interaction
    Prakash, Om
    Pahwa, Girish
    Dabhi, Chetan K.
    Chauhan, Yogesh S.
    Amrouch, Hussam
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (04) : 1420 - 1424