Synthesis and inhibition profiles of N-benzyl- and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase - A molecular docking study

被引:91
|
作者
Mahmudov, Ibadulla [1 ]
Demir, Yeliz [2 ]
Sert, Yusuf [3 ]
Abdullayev, Yusif [4 ,5 ]
Sujayev, Afsun [1 ]
Alwasel, Saleh H. [6 ]
Gulcin, Ilhami [7 ]
机构
[1] Azerbaijan Natl Acad Sci, Inst Chem Addit, Baku 1029, Azerbaijan
[2] Ardahan Univ, Nihat Delibalta Gole Vocat High Sch, Dept Pharm Serv, TR-75000 Ardahan, Turkey
[3] Yozgat Bozok Univ, Sorgun Vocat High Sch, TR-66700 Yozgat, Turkey
[4] Azerbaijan Natl Acad Sci, Inst Petrochem Proc, Baku 1025, Azerbaijan
[5] Baku Engn Univ, Baku 0101, Azerbaijan
[6] King Saud Univ, Coll Sci, Dept Zool, Riyadh 11451, Saudi Arabia
[7] Ataturk Univ, Fac Sci, Dept Chem, TR-25240 Erzurum, Turkey
关键词
Chloroaniline; Dimethylacetamide; Molecular docking; Acetylcholinesterase; Carbonic anhydrases; TROUT ONCORHYNCHUS-MYKISS; BIOLOGICAL EVALUATION; CRYSTAL-STRUCTURE; ISOENZYMES I; HCA I; ALPHA-GLYCOSIDASE; BUTYRYLCHOLINESTERASE; EFFICIENT; DESIGN; ENZYME;
D O I
10.1016/j.arabjc.2021.103645
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The alkyl and aryl derivatives of aniline are important starting materials in fine organic synthesis. Allyl bromide and benzyl chloride were taken as substrates for the alkylation reaction and as a halide ion scavenger. Triethylamine was utilized at reflux condition of N,N-dimethylacetamide (DMA). Novel synthesized N-benzyl and N-allyl aniline derivatives (1a-f) were evaluated to be highly potent inhibitors for acetylcholinesterase (AChE) and carbonic anhydrases (hCAs). The half maximal inhibitory concentration (IC50) of N-benzyl- and N-allyl aniline derivatives were calculated between 243.11 and 633.54 nM for hCA I, 296.32-518.37 nM for hCA II and 182.45-520.21 nM for AChE enzymes. On the other hand, K-i values are in the range of 149.24 +/- 15.59 to 519.59 +/- 102.27 nM for AChE, 202.12 +/- 16.21 to 635.31 +/- 45.33 nM for hCA I and 298.57 +/- 94.13 to 511.18 +/- 115.98 nM for hCA II isoenzyme. Additionally, in silico molecular docking computations were performed with Autodock Vina program to support the experimental in vitro studies for both hCAs and AChE inhibitors. The in silico molecular docking results demonstrated that the scores are in good agreement with the experimental results. (C) 2021 Published by Elsevier B.V. on behalf of King Saud University.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Carbonic anhydrase inhibitors:: Allylsulfonamide, styrene sulfonamide, N-allyl sulfonamides and some of their Si, Ge, and B derivatives
    Chazalette, C
    Rivière-Baudet, M
    Supuran, CT
    Scozzafava, A
    JOURNAL OF ENZYME INHIBITION, 2001, 16 (06): : 475 - 489
  • [2] The green synthesis and molecular docking of novel N-substituted rhodanines as effective inhibitors for carbonic anhydrase and acetylcholinesterase enzymes
    Bayindir, Sinan
    Caglayan, Cuneyt
    Karaman, Muhammet
    Gulcin, Ilhami
    BIOORGANIC CHEMISTRY, 2019, 90
  • [3] Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors
    Turkan, Fikret
    Cetin, Adnan
    Taslimi, Parham
    Karaman, Muhammet
    Gulcin, Ilhami
    BIOORGANIC CHEMISTRY, 2019, 86 : 420 - 427
  • [4] Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as multitarget acetylcholinesterase and carbonic anhydrase inhibitors
    Mert, Samet
    Demir, Yeliz
    Sert, Yusuf
    Kasimogullari, Rahmi
    Gulcin, Lhami
    JOURNAL OF MOLECULAR STRUCTURE, 2025, 1319
  • [5] Celecoxib Derivatives Containing Pyrazole Linked-Sulfonamide Moiety: Carbonic Anhydrase I-II and Acetylcholinesterase Inhibition Profiles, Molecular Docking Studies
    Gerni, Serpil
    Ozturk, Cansu
    Almaz, Zuleyha
    Bayrak, Cetin
    Tan, Ayse
    CHEMISTRYSELECT, 2023, 8 (29):
  • [6] New Thiazole Derivatives: Carbonic Anhydrase I-II and Cholinesterase Inhibition Profiles, Molecular Docking Studies
    Karakaya, Abdullatif
    Ercetin, Tugba
    Yildirim, Suheda
    Kocyigit, Umit M.
    Rudrapal, Mithun
    Rakshit, Gourav
    Cevik, Ulviye Acar
    Ozkay, Yusuf
    CHEMISTRYSELECT, 2024, 9 (28):
  • [7] Pentafluorophenyl Platinum(II) Complexes of PTA and Its N-Allyl and N-Benzyl Derivatives: Synthesis, Characterization and Biological Activity
    Sgarbossa, Paolo
    Sliwinska-Hill, Urszula
    Guedes da Silva, M. Fatima C.
    Bazanow, Barbara
    Pawlak, Aleksandra
    Jackulak, Natalia
    Poradowski, Dominik
    Pombeiro, Armando J. L.
    Smolenski, Piotr
    MATERIALS, 2019, 12 (23)
  • [8] Novel Schiff Base Sulfonate Derivatives as Carbonic Anhydrase and Acetylcholinesterase Inhibitors: Synthesis, Biological Activity, and Molecular Docking Insights
    Yasar, Umit
    Demir, Yeliz
    Gonul, Ilyas
    Ozaslan, Muhammet Serhat
    Celik, Gizem Gumusgoz
    Turkes, Cuneyt
    Beydemir, Sukru
    CHEMISTRY & BIODIVERSITY, 2025,
  • [9] Benzimidazolium Salts Bearing Nitrile Moieties: Synthesis, Enzyme Inhibition Profiling, and Molecular Docking Analysis for Carbonic Anhydrase and Acetylcholinesterase
    Oner, Erkan
    Gok, Yetkin
    Demir, Yeliz
    Taskin-Tok, Tugba
    Aktas, Aydin
    Gulcin, Ilhami
    Yalin, Serap
    CHEMISTRY & BIODIVERSITY, 2023, 20 (12)
  • [10] Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles
    Kocyigit, Umit Muhammet
    Budak, Yakup
    Gurdere, Meliha Burcu
    Erturk, Fatih
    Yencilek, Belkiz
    Taslimi, Parham
    Gulcin, Ilhami
    Ceylan, Mustafa
    ARCHIVES OF PHYSIOLOGY AND BIOCHEMISTRY, 2018, 124 (01) : 61 - 68