data clustering;
data mining;
data visualization;
generative modeling;
probabilistic modeling;
self-organization;
text document processing;
unsupervised learning;
D O I:
10.1109/72.963773
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
A nonlinear latent variable model for the topographic organization and subsequent visualization of multivariate binary data is presented. The generative topographic mapping (GTM) is a nonlinear factor analysis model for continuous data which assumes an isotropic Gaussian noise model and performs uniform sampling from a two-dimensional (2-D) latent space. Despite the success of the GTM when applied to continuous data the development of a similar model for discrete binary data has been hindered due, in part, to the nonlinear link function inherent in the binomial distribution which yields a log-likelihood that is nonlinear in the model parameters. This paper presents an effective method for the parameter estimation of a binary latent variable model-a binary version of the GTM-by adopting a variational approximation to the binomial likelihood. This approximation thus provides a log-likelihood which is quadratic in the model parameters and so obviates the necessity of an iterative M-step in the expectation maximization (EM) algorithm. The power of this method is demonstrated on two significant application domains, handwritten digit recognition and the topographic organization of semantically similar text-based documents.
机构:
Chinese Univ Hong Kong, Dept Stat, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R China
Song, Xinyuan
Xia, Yemao
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Forestry Univ, Dept Appl Math, Nanjing, Jiangsu, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R China
Xia, Yemao
Zhu, Hongtu
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC USAChinese Univ Hong Kong, Dept Stat, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R China
机构:
Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, FinlandUniv Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
Niku, Jenni
Warton, David I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
Univ New South Wales, Evolut & Ecol Res Ctr, Sydney, NSW, AustraliaUniv Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
Warton, David I.
Hui, Francis K. C.
论文数: 0引用数: 0
h-index: 0
机构:
Australian Natl Univ, Math Sci Inst, Canberra, ACT, AustraliaUniv Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
Hui, Francis K. C.
Taskinen, Sara
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, FinlandUniv Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland