Noncommutative spectral invariants and black hole entropy

被引:22
|
作者
Kawahigashi, Y [1 ]
Longo, R
机构
[1] Univ Tokyo, Dept Math Sci, Tokyo 1538914, Japan
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
D O I
10.1007/s00220-005-1322-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an intrinsic entropy associated with a local conformal net A by the coefficients in the expansion of the logarithm of the trace of the "heat kernel" semigroup. In analogy with Weyl theorem on the asymptotic density distribution of the Laplacian eigenvalues, passing to a quantum system with infinitely many degrees of freedom, we regard these coefficients as noncommutative geometric invariants. Under a natural modularity assumption, the leading term of the entropy ( noncommutative area) is proportional to the central charge c, the first order correction ( noncommutative Euler characteristic) is proportional to log mu(A), where mu(A) is the global index of A, and the second spectral invariant is again proportional to c. We give a further general method to define a mean entropy by considering conformal symmetries that preserve a discretization of S-1 and we get the same value proportional to c. We then make the corresponding analysis with the proper Hamiltonian associated to an interval. We find here, in complete generality, a proper mean entropy proportional to log mu(A) with a first order correction defined by means of the relative entropy associated with canonical states. By considering a class of black holes with an associated conformal quantum field theory on the horizon, and relying on arguments in the literature, we indicate a possible way to link the noncommutative area with the Bekenstein-Hawking classical area description of entropy.
引用
收藏
页码:193 / 225
页数:33
相关论文
共 50 条
  • [1] Noncommutative Spectral Invariants and Black Hole Entropy
    Yasuyuki Kawahigashi
    Roberto Longo
    [J]. Communications in Mathematical Physics, 2005, 257 : 193 - 225
  • [2] Quantum correction to the entropy of noncommutative BTZ black hole
    Anacleto, M. A.
    Brito, F. A.
    Cavalcanti, A. G.
    Passos, E.
    Spinelly, J.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2018, 50 (02)
  • [3] Noncommutative Correction to the Entropy of BTZ Black Hole with GUP
    Anacleto, M. A.
    Brito, F. A.
    Carvalho, B. R.
    Passos, E.
    [J]. ADVANCES IN HIGH ENERGY PHYSICS, 2021, 2021
  • [4] Noncommutative correction to the entropy of Schwarzschild black hole with GUP
    Anacleto, M. A.
    Brito, F. A.
    Cruz, S. S.
    Passos, E.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (03):
  • [5] Quantum correction to the entropy of noncommutative BTZ black hole
    M. A. Anacleto
    F. A. Brito
    A. G. Cavalcanti
    E. Passos
    J. Spinelly
    [J]. General Relativity and Gravitation, 2018, 50
  • [6] Noncommutative Correction to the Entropy of Charged BTZ Black Hole
    Juric, Tajron
    Pozar, Filip
    [J]. SYMMETRY-BASEL, 2023, 15 (02):
  • [7] The entropy evolution of a noncommutative black hole under Hawking radiation
    Wen, Peng
    Wang, Xin-Yang
    Liu, Wen-Biao
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (30):
  • [8] Quasinormal modes and quantization of area/entropy for noncommutative BTZ black hole
    Huang, Lu
    Chen, Juhua
    Wang, Yongjiu
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (04):
  • [9] Quasinormal modes and quantization of area/entropy for noncommutative BTZ black hole
    Lu Huang
    Juhua Chen
    Yongjiu Wang
    [J]. The European Physical Journal C, 2018, 78
  • [10] Noncommutative scalar quasinormal modes and quantization of entropy of a BTZ black hole
    Gupta, Kumar S.
    Harikumar, E.
    Juric, Tajron
    Meljanac, Stjepan
    Samsarov, Andjelo
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09):