Robust Sim2Real 3D Object Classification Using Graph Representations and a Deep Center Voting Scheme

被引:2
|
作者
Weibel, Jean-Baptiste [1 ]
Patten, Timothy [1 ,2 ]
Vincze, Markus [1 ]
机构
[1] TU Wien, Vis Robot Lab, Automat & Control Inst, A-1040 Vienna, Austria
[2] Univ Technol Sydney, Fac Engn & Informat Technol, Robot Inst, Ultimo 2007, Australia
基金
欧盟地平线“2020”;
关键词
Deep learning for visual perception; recognition; visual learning;
D O I
10.1109/LRA.2022.3186745
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
While object semantic understanding is essential for service robotic tasks, 3D object classification is still an open problem. Learning from artificial 3D models alleviates the cost of the annotation necessary to approach this problem, but today's methods still struggle with the differences between artificial and real 3D data. We conjecture that one of the causes of this issue is the fact that today's methods learn directly from point coordinates, which makes them highly sensitive to scale changes. We propose to learn from a graph of reproducible object parts whose scale is more reliable. In combination with a voting scheme, our approach achieves significantly more robust classification and improves upon state-of-the-art by up to 16% when transferring from artificial to real objects.
引用
收藏
页码:8028 / 8035
页数:8
相关论文
共 50 条
  • [1] Addressing the Sim2Real Gap in Robotic 3-D Object Classification
    Weibel, Jean-Baptiste
    Patten, Timothy
    Vincze, Markus
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02): : 407 - 413
  • [2] Part-Guided 3D RL for Sim2Real Articulated Object Manipulation
    Xie, Pengwei
    Chen, Rui
    Chen, Siang
    Qin, Yuzhe
    Xiang, Fanbo
    Sun, Tianyu
    Xu, Jing
    Wang, Guijin
    Su, Hao
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (11) : 7178 - 7185
  • [3] Object Detection Using Sim2Real Domain Randomization for Robotic Applications
    Horvath, Daniel
    Erdos, Gabor
    Istenes, Zoltan
    Horvath, Tomas
    Foldi, Sandor
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (02) : 1225 - 1243
  • [4] Sim2real transfer learning for 3D human pose estimation: motion to the rescue
    Doersch, Carl
    Zisserman, Andrew
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Real2Sim or Sim2Real: Robotics Visual Insertion Using Deep Reinforcement Learning and Real2Sim Policy Adaptation
    Chen, Yiwen
    Li, Xue
    Guo, Sheng
    Ng, Xian Yao
    Ang, Marcelo H.
    [J]. INTELLIGENT AUTONOMOUS SYSTEMS 17, IAS-17, 2023, 577 : 617 - 629
  • [6] Robust 3D Object Classification by Combining Point Pair Features and Graph Convolution
    Weibel, Jean-Baptiste
    Patten, Timothy
    Vincze, Markus
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 7262 - 7268
  • [7] D-SPDH: Improving 3D Robot Pose Estimation in Sim2Real Scenario via Depth Data
    Simoni, Alessandro
    Borghi, Guido
    Garattoni, Lorenzo
    Francesca, Gianpiero
    Vezzani, Roberto
    [J]. IEEE Access, 2024, 12 : 166660 - 166673
  • [8] Material Decomposition in Spectral CT Using Deep Learning: A Sim2Real Transfer Approach
    Abascal, Juan F. P. J.
    Ducros, Nicolas
    Pronina, Valeriya
    Rit, Simon
    Rodesch, Pierre-Antoine
    Broussaud, Thomas
    Bussod, Suzanne
    Douek, Philippe C.
    Hauptmann, Andreas
    Arridge, Simon
    Peyrin, Francoise
    [J]. IEEE ACCESS, 2021, 9 : 25632 - 25647
  • [9] Graph-based 3D object classification
    Baloch, Sajjad
    Krim, Hamid
    [J]. COMPUTATIONAL IMAGING IV, 2006, 6065
  • [10] Deep Hough Voting for 3D Object Detection in Point Clouds
    Qi, Charles R.
    Litany, Or
    He, Kaiming
    Guibas, Leonidas J.
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9276 - 9285