Photoluminescent Arrays of Nanopatterned Monolayer MoS2

被引:33
|
作者
Han, Grace G. D. [1 ]
Tu, Kun-Hua [1 ]
Niroui, Farnaz [2 ]
Xu, Wenshuo [3 ]
Zhou, Si
Wang, Xiaochen [3 ]
Bulovic, Vladimir [2 ]
Ross, Caroline A. [1 ]
Warner, Jamie H. [3 ]
Grossman, Jeffrey C. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
block copolymers; MoS2; nanopatterning; photoluminescence; transition metal dichalcogenides; BLOCK-COPOLYMER FILMS; QUANTUM DOTS; GRAPHENE NANORIBBONS; MONO LAYER; NANOSTRUCTURES; EDGES; LITHOGRAPHY; TRANSISTORS; FABRICATION; CONVERSION;
D O I
10.1002/adfm.201703688
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Monolayer 2D MoS2 grown by chemical vapor deposition is nanopatterned into nanodots, nanorods, and hexagonal nanomesh using block copolymer (BCP) lithography. The detailed atomic structure and nanoscale geometry of the nanopatterned MoS2 show features down to 4 nm with nonfaceted etching profiles defined by the BCP mask. Atomic resolution annular dark field scanning transmission electron microscopy reveals the nanopatterned MoS2 has minimal large-scale crystalline defects and enables the edge density to be measured for each nanoscale pattern geometry. Photoluminescence spectroscopy of nanodots, nanorods, and nanomesh areas shows strain-dependent spectral shifts up to 15 nm, as well as reduction in the PL efficiency as the edge density increases. Raman spectroscopy shows mode stiffening, confirming the release of strain when it is nanopatterned by BCP lithography. These results show that small nanodots (approximate to 19 nm) of MoS2 2D monolayers still exhibit strong direct band gap photoluminescence (PL), but have PL quenching compared to pristine material from the edge states. This information provides important insights into the structure-PL property correlations of sub-20 nm MoS2 structures that have potential in future applications of 2D electronics, optoelectronics, and photonics.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Illumination impact on monolayer MoS2 chemical sensor arrays
    Li, Peng
    Zhang, Dongzhi
    Wu, Junfeng
    Cao, Yuhua
    Wu, Zhenling
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2018, 283 : 34 - 41
  • [2] Monolayer MoS2 epitaxy
    Wei, Zheng
    Wang, Qinqin
    Li, Lu
    Yang, Rong
    Zhang, Guangyu
    [J]. NANO RESEARCH, 2021, 14 (06) : 1598 - 1608
  • [3] Monolayer MoS2 epitaxy
    Zheng Wei
    Qinqin Wang
    Lu Li
    Rong Yang
    Guangyu Zhang
    [J]. Nano Research, 2021, 14 : 1598 - 1608
  • [4] σ-Aromaticity in the MoS2 Monolayer
    Kulichenko, Maksim
    Boldyrev, Alexander, I
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (11): : 6267 - 6273
  • [5] Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices
    Xiaodan Li
    Shunqing Wu
    Sen Zhou
    Zizhong Zhu
    [J]. Nanoscale Research Letters, 9
  • [6] Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices
    Li, Xiaodan
    Wu, Shunqing
    Zhou, Sen
    Zhu, Zizhong
    [J]. NANOSCALE RESEARCH LETTERS, 2014, 9 : 1 - 9
  • [7] LARGE-SCALE ARRAYS OF TUNABLE MONOLAYER MoS2 NANOELECTROMECHANICAL RESONATORS
    Liu, Zuheng
    Wang, Luming
    Zhang, Pengcheng
    Xie, Maosong
    Jia, Yueyang
    Chen, Ying
    Jia, Hao
    Wang, Zenghui
    Yang, Rui
    [J]. 2023 IEEE 36TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, MEMS, 2023, : 281 - 284
  • [8] Linear magnetotransport in monolayer MoS2
    Wang, C. M.
    Lei, X. L.
    [J]. PHYSICAL REVIEW B, 2015, 92 (12)
  • [9] Monolayer MoS2 for nanoscale photonics
    Yang, Xianguang
    Li, Baojun
    [J]. NANOPHOTONICS, 2020, 9 (07) : 1557 - 1577
  • [10] Plasmons and screening in a monolayer of MoS2
    Scholz, Andreas
    Stauber, Tobias
    Schliemann, John
    [J]. PHYSICAL REVIEW B, 2013, 88 (03)