Spatial-Temporal Video Enhancement using Super-Resolution from a Multi-Camera System

被引:0
|
作者
Quevedo, E. [1 ]
de la Cruz, J. [2 ]
Callico, G. M. [2 ]
Tobajas, F. [2 ]
Sarmiento, R. [2 ]
机构
[1] Ocean Platform Canary Isl, Telde, Las Palmas, Spain
[2] Univ Las Palmas Gran Canaria, Inst Appl Microelect IUMA, DIEA, Las Palmas Gran Canaria, Spain
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Super-Resolution (SR) covers a set of techniques which objective is to improve the resolution of a video sequence or a single frame. In this scope, a fusion SR algorithm has been used, where High-Resolution (HR) images are constructed from several observed Low-Resolution (LR) images. In this paper, this approach is combined with a Multi-Camera (MC) system to take advantage at the same time from the spatial and temporal correlations between the recorded sequences, in order to improve the quality of the super-resolved HR sequence.
引用
收藏
页码:538 / 539
页数:2
相关论文
共 50 条
  • [1] Video Enhancement using Spatial and Temporal Super-Resolution from a Multi-Camera System
    Quevedo, Eduardo
    de la Cruz, Jesus
    Callico, Gustavo M.
    Tobajas, Felix
    Sarmiento, Roberto
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2014, 60 (03) : 420 - 428
  • [2] Underwater video enhancement using multi-camera super-resolution
    Quevedo, E.
    Delory, E.
    Callico, G. M.
    Tobajas, F.
    Sarmiento, R.
    [J]. OPTICS COMMUNICATIONS, 2017, 404 : 94 - 102
  • [3] Reference-based Video Super-Resolution Using Multi-Camera Video Triplets
    Lee, Junyong
    Lee, Myeonghee
    Cho, Sunghyun
    Lee, Seungyong
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 17803 - 17812
  • [4] Spatial and temporal information as camera parameters for super-resolution video
    Tarvainen, Jussi
    Nuutinen, Mikko
    Oittinen, Pirkko
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2012, : 302 - 305
  • [5] Conditional Neural Video Coding with Spatial-Temporal Super-Resolution
    Wang, Henan
    Pan, Xiaohan
    Feng, Runsen
    Guo, Zongyu
    Chen, Zhibo
    [J]. 2024 DATA COMPRESSION CONFERENCE, DCC, 2024, : 591 - 591
  • [6] Learning a spatial-temporal symmetry network for video super-resolution
    Xiaohang Wang
    Mingliang Liu
    Pengying Wei
    [J]. Applied Intelligence, 2023, 53 : 3530 - 3544
  • [7] CTVSR: Collaborative Spatial-Temporal Transformer for Video Super-Resolution
    Tang, Jun
    Lu, Chenyan
    Liu, Zhengxue
    Li, Jiale
    Dai, Hang
    Ding, Yong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (06) : 5018 - 5032
  • [8] Deformable Spatial-Temporal Attention for Lightweight Video Super-Resolution
    Xue, Tong
    Huang, Xinyi
    Li, Dengshi
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT X, 2024, 14434 : 482 - 493
  • [9] Learning a spatial-temporal symmetry network for video super-resolution
    Wang, Xiaohang
    Liu, Mingliang
    Wei, Pengying
    [J]. APPLIED INTELLIGENCE, 2023, 53 (03) : 3530 - 3544
  • [10] Noise-robust video super-resolution using an adaptive spatial-temporal filter
    Hu, Jing
    Luo, Yupin
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (21) : 9259 - 9278