PREDICTION OF STUDENTS' SCIENCE ACHIEVEMENT: AN APPLICATION OF MULTIVARIATE ADAPTIVE REGRESSION SPLINES AND REGRESSION TREES

被引:0
|
作者
Depren, Serpil Kilic [1 ]
机构
[1] Yildiz Tech Univ, Dept Stat, Istanbul, Turkey
来源
JOURNAL OF BALTIC SCIENCE EDUCATION | 2018年 / 17卷 / 05期
关键词
higher education; machine learning algorithms; PISA; science achievement; PERFORMANCE; ATTITUDES; EDUCATION;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Turkey is ranked at the 54th out of 72 countries in terms of science achievement in the Programme for International Student Assessment (PISA) survey conducted in 2015, which is a very big disappointment for that country. The aim of this research was to determine factors affecting Turkish students' science achievements in order to identify the improvement areas using PISA 2015 dataset. To achieve this aim, Multivariate Adaptive Regression Splines (MARS) and Classification and Regression Trees (CART) approaches were used and these approaches were compared in terms of model accuracy statistics. Since Singapore was the top performer country in terms of science achievement in PISA 2015 survey, the analysis results of Turkey and Singapore were compared to each other to understand the differences. The results showed that MARS outperforms the CART in terms of measuring the prediction of students' science achievement. Furthermore, the most important factors affecting science achievements were environmental optimism, home possessions and science learning time (minutes per week) for Turkey, while the index of economic, social and cultural status, environmental awareness and enjoyment of science for Singapore.
引用
收藏
页码:887 / 903
页数:17
相关论文
共 50 条
  • [1] Multivariate wind power curve modeling using multivariate adaptive regression splines and regression trees
    Mushtaq, Khurram
    Zou, Runmin
    Waris, Asim
    Yang, Kaifeng
    Wang, Ji
    Iqbal, Javaid
    Jameel, Mohammed
    Mahfoodh, Al
    PLOS ONE, 2023, 18 (08):
  • [2] MULTIVARIATE ADAPTIVE REGRESSION SPLINES
    FRIEDMAN, JH
    ANNALS OF STATISTICS, 1991, 19 (01): : 1 - 67
  • [3] Learning to rank by using multivariate adaptive regression splines and conic multivariate adaptive regression splines
    Altinok, Gulsah
    Karagoz, Pinar
    Batmaz, Inci
    COMPUTATIONAL INTELLIGENCE, 2021, 37 (01) : 371 - 408
  • [4] Prediction of transportation energy demand: Multivariate Adaptive Regression Splines
    Sahraei, Mohammad Ali
    Duman, Hakan
    Codur, Muhammed Yasin
    Eyduran, Ecevit
    ENERGY, 2021, 224
  • [5] MULTIVARIATE ADAPTIVE REGRESSION SPLINES - DISCUSSION
    BUJA, A
    DUFFY, D
    HASTIE, T
    TIBSHIRANI, R
    ANNALS OF STATISTICS, 1991, 19 (01): : 93 - 99
  • [6] Application of multivariate adaptive regression splines (MARS) in precision agriculture
    Turpin, KM
    Lapen, DR
    Gregorich, EG
    Topp, GC
    McLaughlin, NB
    Curnoe, WE
    Robin, MJL
    PRECISION AGRICULTURE, 2003, : 677 - 682
  • [7] Customer attrition in retailing: An application of Multivariate Adaptive Regression Splines
    Migueis, V. L.
    Camanho, Ana
    Falcao e Cunha, Joao
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (16) : 6225 - 6232
  • [8] A comparison of regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality
    Austin, Peter C.
    STATISTICS IN MEDICINE, 2007, 26 (15) : 2937 - 2957
  • [9] USE OF LINEAR MODELING, MULTIVARIATE ADAPTIVE REGRESSION SPLINES AND DECISION TREES IN BODY WEIGHT PREDICTION IN GOATS
    Yakubu, Abdulmojeed
    Eyduran, Ecevit
    Celik, Senol
    Ishaya, Juliana O.
    GENETIKA-BELGRADE, 2022, 54 (03): : 1429 - 1445
  • [10] Multivariate Adaptive Regression Splines Application for Multivariate Geotechnical Problems with Big Data
    Zhang W.
    Goh A.T.C.
    Zhang Y.
    Geotechnical and Geological Engineering, 2016, 34 (1) : 193 - 204