Hierarchical part-based visual object categorization

被引:0
|
作者
Bouchard, G [1 ]
Triggs, B [1 ]
机构
[1] INRIA, GRAVIR, LEAR, F-38330 Montbonnot St Martin, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a generative model that codes the geometry and appearance of generic visual object categories as a loose hierarchy of parts, with probabilistic spatial relations linking parts to subparts, soft assignment of subparts to parts, and scale invariant keypoint based localfeatures at the lowest level of the hierarchy. The method is designed to efficiently handle categories containing hundreds of redundant local features, such as those returned by current keypoint detectors. This robustness allows it to outperform constellation style models, despite their stronger spatial models. The model is initialized by robust bottom-up voting over location-scale pyramids, and optimized by Expectation-Maximization. Training is rapid, and objects do not need to be marked in the training images. Experiments on several popular datasets show the method's ability to capture complex natural object classes.
引用
收藏
页码:710 / 715
页数:6
相关论文
共 50 条
  • [1] Visual working memory for global, object, and part-based information
    Patterson, Michael D.
    Bly, Benjamm Martin
    Porcelli, Anthony J.
    Rypma, Bart
    [J]. MEMORY & COGNITION, 2007, 35 (04) : 738 - 751
  • [2] Visual working memory for global, object, and part-based information
    Michael D. Patterson
    Benjamin Martin Bly
    Anthony J. Porcelli
    Bart Rypma
    [J]. Memory & Cognition, 2007, 35 : 738 - 751
  • [3] Part-Based Geometric Categorization and Object Reconstruction in Cluttered Table-Top Scenes
    Marton, Zoltan-Csaba
    Balint-Benczedi, Ferenc
    Mozos, Oscar Martinez
    Blodow, Nico
    Kanezaki, Asako
    Goron, Lucian Cosmin
    Pangercic, Dejan
    Beetz, Michael
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2014, 76 (01) : 35 - 56
  • [4] A Hierarchical Matching Framework for Visual Object Categorization
    Jogan, Matjaz
    [J]. ELEKTROTEHNISKI VESTNIK, 2009, 76 (04): : 217 - 222
  • [5] Weakly supervised learning of part-based spatial models for visual object recognition
    Crandall, David J.
    Huttenlocher, Daniel P.
    [J]. COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 : 16 - 29
  • [6] UbiShop: Commercial item recommendation using visual part-based object representation
    Heng-Yu Chi
    Chun-Chieh Chen
    Wen-Huang Cheng
    Ming-Syan Chen
    [J]. Multimedia Tools and Applications, 2016, 75 : 16093 - 16115
  • [7] UbiShop: Commercial item recommendation using visual part-based object representation
    Chi, Heng-Yu
    Chen, Chun-Chieh
    Cheng, Wen-Huang
    Chen, Ming-Syan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (23) : 16093 - 16115
  • [8] Data-Driven Hierarchical Structure Kernel for Multiscale Part-Based Object Recognition
    Wang, Botao
    Xiong, Hongkai
    Jiang, Xiaoqian
    Zheng, Yuan F.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) : 1765 - 1778
  • [9] Part-Based Room Categorization for Household Service Robots
    Ursic, Peter
    Mandeljc, Rok
    Leonardis, Ales
    Kristan, Matej
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 2287 - 2294
  • [10] Object Categorization Based on Hierarchical Learning
    Xia, Tian
    Tang, Y. Y.
    Wei, Yantao
    Li, Hong
    Li, Luoqing
    [J]. 2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1419 - 1422