Atom Probe Tomography Analysis of Mica

被引:2
|
作者
Cappelli, Chiara [1 ]
Perez-Huerta, Alberto [1 ,2 ]
Alam, Sardar B. [3 ]
Prozorov, Tanya [3 ]
机构
[1] Univ Alabama, Dept Geol Sci, Tuscaloosa, AL 35487 USA
[2] Univ Alabama, Alabama Museum Nat Hist, Tuscaloosa, AL 35487 USA
[3] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
3D reconstructions; anisotropy; biotite; chemical composition; crystallographic orientation; FIELD EVAPORATION; TRIOCTAHEDRAL MICAS; ESTIMATING LI; EVENTS; DEPENDENCE; PROGRAM; LITHIUM; TOOLS;
D O I
10.1017/S1431927621012940
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser-assisted atom probe tomography (APT) is a relatively new, powerful technique for sub-nanometric mineral and biomineral analysis. However, the laser-assisted APT analysis of highly anisotropic and chemically diverse minerals, such as phyllosilicates, may prove especially challenging due to the complex interaction between the crystal structure and the laser pulse upon applying a high electric field. Micas are a representative group of nonswelling clay minerals of relevance to a number of scientific and technological fields. In this study, a Mg-rich biotite was analyzed by APT to generate preliminary data on nonisotropic minerals and to investigate the effect of the crystallographic orientation on mica chemical composition and structure estimation. The difference in results obtained for specimens extracted from the (001) and (hk0) mica surfaces indicate the importance of both experimental parameters and the crystallography. Anisotropy of mica has a strong influence on the physicochemical properties of the mineral during field evaporation and the interpretation of APT data. The promising results obtained in the present study open the way to future innovative APT applications on mica and clay minerals and contribute to the general discussion on the challenges for the analysis of geomaterials by atom probe tomography.
引用
收藏
页码:1207 / 1220
页数:14
相关论文
共 50 条
  • [1] A UK Facility for Atom Probe Tomography Analysis
    Marquis, E. A.
    Saxey, D. W.
    Cerezo, A.
    Smith, G. D. W.
    [J]. MICROSCOPY AND MICROANALYSIS, 2009, 15 : 288 - 289
  • [2] Atom probe tomography analysis of WC powder
    Weidow, Jonathan
    [J]. ULTRAMICROSCOPY, 2013, 132 : 295 - 299
  • [3] Atom probe tomography
    Kareh, Kristina Maria
    [J]. NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [4] Atom probe tomography
    [J]. Nature Reviews Methods Primers, 1
  • [5] Atom probe tomography
    Miller, M. K.
    Forbes, R. G.
    [J]. MATERIALS CHARACTERIZATION, 2009, 60 (06) : 461 - 469
  • [6] Atom Probe Tomography
    Shea, John J.
    [J]. IEEE ELECTRICAL INSULATION MAGAZINE, 2017, 33 (04) : 71 - 71
  • [7] Atom Probe Tomography
    Felfer, P.
    Stephenson, L. T.
    Li, T.
    [J]. PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2018, 55 (08): : 515 - 526
  • [8] Promoting Standards in Quantitative Atom Probe Tomography Analysis
    Ulfig, R. M.
    Kelly, T. F.
    Gault, B.
    [J]. MICROSCOPY AND MICROANALYSIS, 2009, 15 : 260 - 261
  • [9] Atom probe tomography applied to the analysis of irradiated microstructures
    Emmanuelle A. Marquis
    [J]. Journal of Materials Research, 2015, 30 : 1222 - 1230
  • [10] Quantitative Analysis of Cementite in Steel by Atom Probe Tomography
    Takahashi, J.
    Kawakami, K.
    Yamaguchi, Y.
    [J]. MICROSCOPY AND MICROANALYSIS, 2009, 15 : 306 - 307