Using theoretical ROC curves for analysing machine learning binary classifiers

被引:17
|
作者
Omar, Luma [1 ]
Ivrissimtzis, Ioannis [1 ]
机构
[1] Univ Durham, Dept Comp Sci, Durham DH1 3LE, England
关键词
Binary classification; Classifier analysis; Detection theory; ROC curve; Beta distribution; AREA; BETA;
D O I
10.1016/j.patrec.2019.10.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most binary classifiers work by processing the input to produce a scalar response and comparing it to a threshold value. The various measures of classifier performance assume, explicitly or implicitly, probability distributions P-s and P-n of the response belonging to either class, probability distributions for the cost of each type of misclassification, and compute a performance score from the expected cost. In machine learning, classifier responses are obtained experimentally and performance scores are computed directly from them, without any assumptions on P-s and P-n. Here, we argue that the omitted step of estimating theoretical distributions for P-s and P-n can be useful. In a biometric security example, we fit beta distributions to the responses of two classifiers, one based on logistic regression and one on ANNs, and use them to establish a categorisation into a small number of classes with different extremal behaviours at the ends of the ROC curves. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:447 / 451
页数:5
相关论文
共 50 条
  • [1] Evaluating classifiers using ROC curves
    Prati, Ronaldo Cristiano
    Batista, Gustavo Enrique De Almeida Prado Alves
    Monard, Maria Carolina
    [J]. IEEE Latin America Transactions, 2008, 6 (02) : 215 - 222
  • [2] ROC analysis of classifiers in machine learning: A survey
    Majnik, Matjaz
    Bosnic, Zoran
    [J]. INTELLIGENT DATA ANALYSIS, 2013, 17 (03) : 531 - 558
  • [3] Consistency results for the ROC curves of fused classifiers
    Bjerkaas, KS
    Oxley, ME
    Bauer, KW
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XIII, 2004, 5429 : 361 - 372
  • [4] Models for analysing the economic impact of ore sorting, using ROC curves
    Drumond, A.
    Rodrigues, A. L.
    Costa, J. F. C. L.
    Niquini, F. G.
    Lemos, M. G.
    [J]. JOURNAL OF THE SOUTHERN AFRICAN INSTITUTE OF MINING AND METALLURGY, 2024, 127 (07) : 397 - 406
  • [5] Evaluating the fusion of multiple classifiers via ROC curves
    Hill, JM
    Oxley, ME
    Bauer, KW
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XII, 2003, 5096 : 411 - 422
  • [6] Movie genre classification using binary relevance, label powerset, and machine learning classifiers
    Sanjay Kumar
    Nikhil Kumar
    Aditya Dev
    Siraz Naorem
    [J]. Multimedia Tools and Applications, 2023, 82 : 945 - 968
  • [7] Movie genre classification using binary relevance, label powerset, and machine learning classifiers
    Kumar, Sanjay
    Kumar, Nikhil
    Dev, Aditya
    Naorem, Siraz
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (01) : 945 - 968
  • [8] Item response theory in AI: Analysing machine learning classifiers at the instance level
    Martinez-Plumed, Fernando
    Prudencio, Ricardo B. C.
    Martinez-Uso, Adolfo
    Hernandez-Orallo, Jose
    [J]. ARTIFICIAL INTELLIGENCE, 2019, 271 : 18 - 42
  • [9] Using ROC curves in clinical investigation. Theoretical and practical issues
    Cerda, Jaime
    Cifuentes, Lorena
    [J]. REVISTA CHILENA DE INFECTOLOGIA, 2012, 29 (02): : 138 - 141
  • [10] Evaluating the Performance of Machine Learning Algorithms on Construction Accidents: An Application of ROC Curves
    Gholizadeh, Pouya
    Esmaeili, Behzad
    Memarian, Babak
    [J]. CONSTRUCTION RESEARCH CONGRESS 2018: SAFETY AND DISASTER MANAGEMENT, 2018, : 8 - 18