Gully Erosion Susceptibility Assessment in the Kondoran Watershed Using Machine Learning Algorithms and the Boruta Feature Selection

被引:23
|
作者
Ahmadpour, Hamed [1 ]
Bazrafshan, Ommolbanin [1 ]
Rafiei-Sardooi, Elham [2 ]
Zamani, Hossein [3 ]
Panagopoulos, Thomas [4 ]
机构
[1] Univ Hormozgan, Fac Agr & Nat Resources Engn, Dept Nat Resources Engn, Bandar Abbas 7916193145, Iran
[2] Univ Jiroft, Fac Nat Resources, Dept Ecol Engn, Kerman 7867161167, Iran
[3] Univ Hormozgan, Fac Sci, Dept Math & Stat, Bandar Abbas 7916193145, Iran
[4] Univ Algarve, Res Ctr Spatial & Org Dynam, Gambelas Campus, P-8005 Faro, Portugal
关键词
ensemble modeling; data mining; gully erosion; watershed management; land use; SOIL-EROSION; LOGISTIC-REGRESSION; FLOOD; MODEL; GIS; PREDICTION; RESERVOIR; ACCURACY; PLATFORM; REGION;
D O I
10.3390/su131810110
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Gully erosion susceptibility mapping is an essential land management tool to reduce soil erosion damages. This study investigates gully susceptibility based on multiple diagnostic analysis, support vector machine and random forest algorithms, and also a combination of these models, namely the ensemble model. Thus, a gully susceptibility map in the Kondoran watershed of Iran was generated by applying these models on the occurrence and non-occurrence points (as the target variable) and several predictors (slope, aspect, elevation, topographic wetness index, drainage density, plan curvature, distance to streams, lithology, soil texture and land use). The Boruta algorithm was used to select the most effective variables in modeling gully erosion susceptibility. The area under the receiver operating characteristic curve (AUC), the receiver operating characteristics, and true skill statistics (TSS) were used to assess the model performance. The results indicated that the ensemble model had the best performance (AUC = 0.982, TSS = 0.93) compared to the others. The most effective factors in gully erosion susceptibility mapping of the study region were topological, anthropogenic, and geological. The methodology and variables of this study can be used in other regions to control and mitigate the gully erosion phenomenon by applying biophilic and regenerative techniques at the locations of the most influential factors.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Gully Erosion Susceptibility Assessment Using Different Machine Learning Algorithms: A Case Study of Shazand Watershed in Iran
    Majid Mohammady
    Aliakbar Davudirad
    [J]. Environmental Modeling & Assessment, 2024, 29 : 249 - 261
  • [2] Gully Erosion Susceptibility Assessment Using Different Machine Learning Algorithms: A Case Study of Shazand Watershed in Iran
    Mohammady, Majid
    Davudirad, Aliakbar
    [J]. ENVIRONMENTAL MODELING & ASSESSMENT, 2024, 29 (02) : 249 - 261
  • [3] Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms
    Amiri, Mandis
    Pourghasemi, Hamid Reza
    Ghanbarian, Gholam Abbas
    Afzali, Sayed Fakhreddin
    [J]. GEODERMA, 2019, 340 : 55 - 69
  • [4] Prediction of gully erosion susceptibility mapping using novel ensemble machine learning algorithms
    Arabameri, Alireza
    Pal, Subodh Chandra
    Costache, Romulus
    Saha, Asish
    Rezaie, Fatemeh
    Danesh, Amir Seyed
    Pradhan, Biswajeet
    Lee, Saro
    Nhat-Duc Hoang
    [J]. GEOMATICS NATURAL HAZARDS & RISK, 2021, 12 (01) : 469 - 498
  • [6] Hybrid Machine Learning Approach for Gully Erosion Mapping Susceptibility at a Watershed Scale
    Hitouri, Sliman
    Varasano, Antonietta
    Mohajane, Meriame
    Ijlil, Safae
    Essahlaoui, Narjisse
    Ali, Sk Ajim
    Essahlaoui, Ali
    Quoc Bao Pham
    Waleed, Mirza
    Palateerdham, Sasi Kiran
    Teodoro, Ana Claudia
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (07)
  • [7] Modeling gully erosion susceptibility in Phuentsholing, Bhutan using deep learning and basic machine learning algorithms
    Saha, Sunil
    Sarkar, Raju
    Thapa, Gautam
    Roy, Jagabandhu
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2021, 80 (08)
  • [8] Modeling gully erosion susceptibility in Phuentsholing, Bhutan using deep learning and basic machine learning algorithms
    Sunil Saha
    Raju Sarkar
    Gautam Thapa
    Jagabandhu Roy
    [J]. Environmental Earth Sciences, 2021, 80
  • [9] Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms
    Gayen, Amiya
    Pourghasemi, Hamid Reza
    Saha, Sunil
    Keesstra, Saskia
    Bai, Shibiao
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 668 : 124 - 138
  • [10] Gully Erosion Management Machine learning algorithms
    Fernandes, Michelle
    Patel, Lavkush
    Lakshman, Kshama
    Mullasseri, Sileesh
    Verma, Sudhir
    David, T. Divya
    Singh, Archana
    Saalim, Syed Mohammad
    Jadav, Ravindra
    Vinayak, Vandana
    [J]. CURRENT SCIENCE, 2019, 116 (12): : 1944 - 1944