Perfect Binary Codes Capable of Correcting Equal Multiple Deletions

被引:0
|
作者
Nakada, Kento [1 ]
机构
[1] Okayama Univ, Grad Sch Educ, Master Program, Kita Ku, 1-1-1 Tsushima Naka, Okayama 7008530, Japan
关键词
D O I
10.1109/ISIT45174.2021.9517840
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper proposes new perfect codes C-a((r,t)) (n), capable of correcting multiple deletion of type sigma, which is containing special classes - almost consecutively equal (ACE for short) t-tuple deletions and almost splitly equal (ASE for short) t-tuple deletions.
引用
收藏
页码:2661 / 2665
页数:5
相关论文
共 50 条
  • [1] PERFECT MULTIPLE ERROR-CORRECTING ARITHMETIC CODES
    GORDON, DM
    [J]. MATHEMATICS OF COMPUTATION, 1987, 49 (180) : 621 - 633
  • [2] Non-binary Codes for Correcting a Burst of at Most 2 Deletions
    Wang, Shuche
    Sima, Jin
    Farnoud, Farzad
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 2804 - 2809
  • [3] Non-Binary Codes for Correcting a Burst of at Most t Deletions
    Wang, Shuche
    Tang, Yuanyuan
    Sima, Jin
    Gabrys, Ryan
    Farnoud, Farzad
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (02) : 964 - 979
  • [4] PERFECT (D, K)-CODES CAPABLE OF CORRECTING SINGLE PEAK-SHIFTS
    LEVENSHTEIN, VI
    VINCK, AJH
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (02) : 656 - 662
  • [5] Codes Correcting Two Deletions
    Gabrys, Ryan
    Sala, Frederic
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (02) : 965 - 974
  • [6] Efficient Low-Redundancy Codes for Correcting Multiple Deletions
    Brakensiek, Joshua
    Guruswami, Venkatesan
    Zbarsky, Samuel
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (05) : 3403 - 3410
  • [7] Codes for Correcting Localized Deletions
    Hanna, Serge Kas
    El Rouayheb, Salim
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (04) : 2206 - 2216
  • [8] Codes Correcting Two Deletions
    Gabrys, Ryan
    Sala, Frederic
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 426 - 430
  • [9] Systematic binary deletion/insertion error correcting codes capable of correcting random bit errors
    Saowapa, K
    Kaneko, H
    Fujiwara, E
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2000, E83A (12) : 2699 - 2705
  • [10] bi-Byte correcting non-binary perfect codes
    Tyagi, Vinod
    Lata, Tarun
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (02)