We study a definition of entropy for Z(+) x Z(+)-actions (or Z(2)-actions) due to S. Friedland. Unlike the more traditional definition, this is better suited for actions whose generators have finite entropy as single transformations. We compute its value in several examples. In particular, we settle a conjecture of Friedland [2].
机构:
Univ Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada IME, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada IME, BR-91509900 Porto Alegre, RS, Brazil
Baraviera, Alexandre
Exel, Ruy
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, SC, BrazilUniv Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada IME, BR-91509900 Porto Alegre, RS, Brazil
Exel, Ruy
Goncalves, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, SC, BrazilUniv Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada IME, BR-91509900 Porto Alegre, RS, Brazil
Goncalves, Daniel
Rodrigues, Fagner
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada IME, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada IME, BR-91509900 Porto Alegre, RS, Brazil
Rodrigues, Fagner
Royer, Danilo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, SC, BrazilUniv Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada IME, BR-91509900 Porto Alegre, RS, Brazil