Conductive-bridge memory cells based on a nanoporous electrodeposited GeSbTe alloy

被引:15
|
作者
Rebora, Charles [1 ]
Huang, Ruomeng [2 ]
Kissling, Gabriela P. [4 ]
Bocquet, Marc [1 ]
De Groot, Kees [2 ]
Favre, Luc [1 ]
Grosso, David [1 ]
Deleruyelle, Damien [3 ]
Putero, Magali [1 ]
机构
[1] Aix Marseille Univ, Univ Toulon, CNRS, IM2NP,UMR 7334, Av Escadrille Normandie Niemen, F-13397 Marseille, France
[2] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[3] INSA Lyon, INL, UMR CNRS 5270, 7 Av Jean Capelle, F-69621 Villeurbanne, France
[4] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England
关键词
redox-based resistive switching memories; conductive-bridge random access memories; GeSbTe; chalcogenide; volatile memory; non-volatile memory; electrodeposition; PHASE-CHANGE MATERIALS; NONAQUEOUS ELECTRODEPOSITION; THIN-FILMS; GE2SB2TE5; DEVICES; COPPER;
D O I
10.1088/1361-6528/aae6db
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report on the fabrication of memory devices based on a nanoporous GeSbTe layer electrodeposited inbetween TiN and Ag electrodes. It is shown that devices can operate along two distinct electrical modes consisting of a volatile or a non-volatile resistance switching mode upon appropriate preconditioning procedures. Based on electrical measurements conducted in both switching modes and physical analysis performed on a device after electrical stress, resistance switching is attributed to the formation/dissolution of a conductive filament from the Ag electrode into the GST layer whereas the volatile/non-volatile resistance switching is attributed to the presence of an interface layer between the GST and the Ag top electrode. Due to their simple, low-cost and low-temperature fabrication procedure, these devices could be advantageously exploited in flexible electronic applications or embedded into the back-end of line CMOS technology.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Subquantum conductive-bridge memory
    Jameson, John R.
    Kamalanathan, Deepak
    APPLIED PHYSICS LETTERS, 2016, 108 (05)
  • [2] One-dimensional model of the programming kinetics of conductive-bridge memory cells
    Jameson, John R.
    Gilbert, Nad
    Koushan, Foroozan
    Saenz, Juan
    Wang, Janet
    Hollmer, Shane
    Kozicki, Michael N.
    APPLIED PHYSICS LETTERS, 2011, 99 (06)
  • [3] Effects of cooperative ionic motion on programming kinetics of conductive-bridge memory cells
    Jameson, John R.
    Gilbert, Nad
    Koushan, Foroozan
    Saenz, Juan
    Wang, Janet
    Hollmer, Shane
    Kozicki, Michael
    APPLIED PHYSICS LETTERS, 2012, 100 (02)
  • [4] The Effect of Humidity on Reducing Forming Voltage in Conductive-Bridge Random Access Memory With an Alloy Electrode
    Lin, Shih-Kai
    Chen, Min-Chen
    Chang, Ting-Chang
    Lien, Chen-Hsin
    Chang, Jing-Shuen
    Wu, Cheng-Hsien
    Tseng, Yi-Ting
    Xu, You-Lin
    Huang, Kai-Lin
    Sun, Li-Chuan
    Zhang, Yong-Ci
    Chiu, Yu-Ju
    Sze, Simon M.
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (10) : 1606 - 1609
  • [5] Quantized Conductance in Ag/GeS2/W Conductive-Bridge Memory Cells
    Jameson, John R.
    Gilbert, Nad
    Koushan, Foroozan
    Saenz, Juan
    Wang, Janet
    Hollmer, Shane
    Kozicki, Michael
    Derhacobian, Narbeh
    IEEE ELECTRON DEVICE LETTERS, 2012, 33 (02) : 257 - 259
  • [6] Single-Event Effect Performance of a Conductive-Bridge Memory EEPROM
    Chen, Dakai
    Wilcox, Edward
    Berg, Melanie
    Kim, Hak
    Phan, Anthony
    Figueiredo, Marco
    Seidleck, Christina
    LaBel, Kenneth
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (06) : 2703 - 2708
  • [7] Conductive-bridge memory (CBRAM) with excellent high-temperature retention
    Jameson, J. R.
    Blanchard, P.
    Cheng, C.
    Dinh, J.
    Gallo, A.
    Gopalakrishnan, V.
    Gopalan, C.
    Guichet, B.
    Hsu, S.
    Kamalanathan, D.
    Kim, D.
    Koushan, F.
    Kwan, M.
    Law, K.
    Lewis, D.
    Ma, Y.
    McCaffrey, V.
    Park, S.
    Puthenthermadam, S.
    Runnion, E.
    Sanchez, J.
    Shields, J.
    Tsai, K.
    Tysdal, A.
    Wang, D.
    Williams, R.
    Kozicki, M. N.
    Wang, J.
    Gopinath, V.
    Hollmer, S.
    Van Buskirk, M.
    2013 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2013,
  • [8] Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory
    Qin, Shengjun
    Liu, Zhan
    Zhang, Guo
    Zhang, Jinyu
    Sun, Yaping
    Wu, Huaqiang
    Qian, He
    Yu, Zhiping
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) : 8627 - 8632
  • [9] Forming mechanism of Te-based conductive-bridge memories
    Mendes, M. Kazar
    Martinez, E.
    Marty, A.
    Veillerot, M.
    Yamashita, Y.
    Gassilloud, R.
    Bernard, M.
    Renault, O.
    Barrett, N.
    APPLIED SURFACE SCIENCE, 2018, 432 : 34 - 40
  • [10] Designing Conductive-Bridge Phase-Change Memory to Enable Ultralow Programming Power
    Yang, Zhe
    Li, Bowen
    Wang, Jiang-Jing
    Wang, Xu-Dong
    Xu, Meng
    Tong, Hao
    Cheng, Xiaomin
    Lu, Lu
    Jia, Chunlin
    Xu, Ming
    Miao, Xiangshui
    Zhang, Wei
    Ma, En
    ADVANCED SCIENCE, 2022, 9 (08)