A review of fish swimming mechanics and behaviour in altered flows

被引:584
|
作者
Liao, James C. [1 ]
机构
[1] Cornell Univ, Dept Neurobiol & Behav, Ithaca, NY USA
关键词
turbulence; vortices; kinematics; lateral line; muscle activity; flow visualization;
D O I
10.1098/rstb.2007.2082
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fishes suspended in water are subject to the complex nature of three-dimensional flows. Often, these flows are the result of abiotic and biotic sources that alter otherwise uniform flows, which then have the potential to perturb the swimming motions of fishes. The goal of this review is to highlight key studies that have contributed to a mechanistic and behavioural understanding of how perturbing flows affect fish. Most of our understanding of fish behaviour in turbulence comes from observations of natural conditions in the field and laboratory studies employing controlled perturbations, such as vortices generated in the wake behind simple geometric objects. Laboratory studies have employed motion analysis, flow visualization, electromyography, respirometry and sensory deprecation techniques to evaluate the mechanisms and physiological costs of swimming in altered flows. Studies show that flows which display chaotic and wide fluctuations in velocity can repel fishes, while flows that have a component of predictability can attract fishes. The ability to maintain stability in three-dimensional flows, either actively with powered movements or passively using the posture and intrinsic compliance of the body and fins, plays a large role in whether fish seek out or avoid turbulence. Fish in schools or current-swept habitats can benefit from altered flows using two distinct though not mutually exclusive mechanisms: flow refuging ( exploiting regions of reduced flow relative to the earth frame of reference) and vortex capture ( harnessing the energy of environmental vortices). Integrating how the physical environment affects organismal biomechanics with the more complex issue of behavioural choice requires consideration beyond simple body motions or metabolic costs. A fundamental link between these two ways of thinking about animal behaviour is how organisms sense and process information from the environment, which determines when locomotor behaviour is initiated and modulated. New data are presented here which show that behaviour changes in altered flows when either the lateral line or vision is blocked, showing that fish rely on multi-modal sensory inputs to negotiate complex flow environments. Integrating biomechanics and sensory biology to understand how fish swim in turbulent flow at the organismal level is necessary to better address population-level questions in the fields of fisheries management and ecology.
引用
收藏
页码:1973 / 1993
页数:21
相关论文
共 50 条
  • [1] Effects of altered gravity on the swimming behaviour of fish
    Hilbig, R
    Anken, RH
    Sonntag, G
    Höhne, S
    Henneberg, J
    Kretschmer, N
    Rahmann, H
    SPACE LIFE SCIENCES: BIOLOGICAL RESEARCH AND SPACE RADIATION, 2002, 30 (04): : 835 - 841
  • [2] THE IPOS FRAMEWORK: LINKING FISH SWIMMING PERFORMANCE IN ALTERED FLOWS FROM LABORATORY EXPERIMENTS TO RIVERS
    Lacey, R. W. Jay
    Neary, Vincent S.
    Liao, James C.
    Enders, Eva C.
    Tritico, Hans M.
    RIVER RESEARCH AND APPLICATIONS, 2012, 28 (04) : 429 - 443
  • [3] Mechanics and control of swimming: A review
    Colgate, JE
    Lynch, KM
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2004, 29 (03) : 660 - 673
  • [4] Hydrokinetic Turbine Effects on Fish Swimming Behaviour
    Hammar, Linus
    Andersson, Sandra
    Eggertsen, Linda
    Haglund, Johan
    Gullstrom, Martin
    Ehnberg, Jimmy
    Molander, Sverker
    PLOS ONE, 2013, 8 (12):
  • [5] Swimming behaviour of downstream migrating carp in accelerating flows
    Xi, Yuqian
    Cao, Chenyang
    Liu, Shikang
    Li, Pengcheng
    Xiao, Lirong
    Yao, Weiwei
    JOURNAL OF HYDRAULIC RESEARCH, 2024, 62 (03) : 253 - 266
  • [6] In situ swimming speed and swimming behaviour of fish feeding on the krill Meganyctiphanes norvegica
    Onsrud, MSR
    Kaartvedt, S
    Breien, MT
    CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2005, 62 (08) : 1822 - 1832
  • [7] Large-amplitude undulatory fish swimming: Fluid mechanics coupled to internal mechanics
    Pedley, TJ
    Hill, SJ
    JOURNAL OF EXPERIMENTAL BIOLOGY, 1999, 202 (23): : 3431 - 3438
  • [8] Fish-like swimming in oblique flows: A numerical investigation
    Shao, J. Y.
    Li, T. Q.
    OCEAN ENGINEERING, 2021, 230
  • [9] Review of fish swimming modes for aquatic locomotion
    Sfakiotakis, M
    Lane, DM
    Davies, JBC
    IEEE JOURNAL OF OCEANIC ENGINEERING, 1999, 24 (02) : 237 - 252
  • [10] Downstream Swimming Behaviour of Catadromous and Potamodromous Fish Over Spillways
    Silva, A. T.
    Katopodis, C.
    Tachie, M. F.
    Santos, J. M.
    Ferreira, M. T.
    RIVER RESEARCH AND APPLICATIONS, 2016, 32 (05) : 935 - 945